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Abstract

The aim of the study was to investigate if critiques of proofs presentations by
the class and the instructor had an impact on writing proofs for the equivalence
of definitions of ring theoretic concepts. For a ring A and an ideal J of A, ring-
theoretic concepts are defined describing a certain property of J. In the cases
that we consider, the property of J has an equivalent definition in terms of the
elements in the ring A/J. Eight problems involving equivalence type relations were
selected for research (see Appendix). Students worked in pairs on the problem
allocated to them to prove the equivalence of two definitions for a particular
concept. Each pair of students presented their proof during the weekly tutorial
class, one proving the sufficient (”if”) part and the other the necessary (”only
if”) part. The instructor and the students critiqued these proofs, after which the
students were instructed to improve their proofs based on the critiques. Both the
original and the improved version of the proofs were submitted to the instructor
for grading. All the students were then given an unannounced test in which they
were instructed to do any two of the eight problems they had worked on. Of the
16 students, 14 attempted their own problem and one new problem in the test.
Three weeks later one of the eight problems was selected by the instructor as a final
examination question for the course. The Seldon and Seldon (2009) theoretical
framework was used to look at the logical construction path, the hierarchical, the
rhetorical and the problem solving aspects of the proof. An 8-point marking rubric
based on the framework was drawn up and used to grade the proofs. The results
indicate that students were able to carry-over some knowledge and experience
of proof development from the critiqued class presentations to the test when the
question was familiar (first test question), but they were not so successful when
they had to develop a proof for a less familiar problem (second test question and
the exam question).
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Abstract: The aim of the study was to investigate if critiques of proof presentations by the class and the 

instructor had an impact on writing proofs for the equivalence of definitions of ring theoretic concepts. 

For a ring A and an ideal J of A, ring- theoretic concepts are defined describing a certain property of J. 

In the cases that we consider, the property of J has an equivalent definition in terms of the elements in 

the ring A/J. Eight problems involving equivalence type relations were selected for research (see 

Appendix). Students worked in pairs on the problem allocated to them to prove the equivalence of two 

definitions for a particular concept. Each pair of students presented their proof  during the weekly 

tutorial class, one proving the sufficient (“if”) part and the other the necessary (“only if”) part. The 

instructor and the students critiqued these proofs, after which the students revised their proofs based 

on the critiques. Both the original and the improved version of the proofs were submitted to the 

instructor for grading.  All the students were then given an unannounced test in which they had to do 

any two of the eight problems they had worked on. Of the 16 students, 14 attempted their own 

problem and one new problem in the test. Three weeks later one of the eight problems was selected by 

the instructor as a final examination question for the course.  The Seldon and Seldon (2009) 

theoretical framework was used to look at the logical construction path, the hierarchical, the rhetorical 

and the problem solving aspects of the proof. An 8-point marking rubric based on the framework was 

drawn up and used to grade the proofs. The results indicate that students were able to carry-over 

some knowledge and experience of proof development from the critiqued class presentations to the 

test when the question was familiar (first test question), but they were not so successful when they 

had to develop a proof for a less familiar problem (second test question and the exam question). The 

research is significant in that it (a) highlights the difficulties students have in writing proofs of the 

equivalence of definitions of ring theoretic concepts; (b) presents a teaching strategy that should lead 

to improvements in proof writing, student participation and communication. Further research is 

necessary to find strategies that can maintain the initial gains.  
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education 
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1. Introduction
Definitions  are fundamental in mathematics and some of the roles attributed to them include:

(1) to introduce the objects of a theory and to convey the characterizing properties of concepts

(Mariotti & Fischbein, 1997); (2) to constitute the fundamental components for the formation of

concepts (Klausmeier & Feldman, 1975; Sowder, 1980; Vinner, 1991); (3) to establish the foundation

for proofs and problem solving (Moore, 1994; Weber, 2002); (4) to create uniformity in the meaning of

concepts (Borasi, 1992); and (5) to supply the language, the verbal expression, for the steps in a proof

,that is, how it begins, how it ends, and how the beginning is linked to the ending by rules of logic and a

definition, axiom or theorem (Moore, 1994).

Most mathematicians share the view that a proof is most valuable when it leads to 

understanding, helping them think more clearly and effectively about mathematics (Rav,1999; 

Manin,1992,1998; Thurston,1994) and that proofs are the “mathematician’s way to display the 

mathematical machinery for solving problems and to justify that a proposed solution to a problem is 

indeed a solution”(Rav,1999,p.13). A primary reason that proofs are presented to undergraduates is to 

convince and explain (e.g.,Hersh, 1993). 

Selden and Selden (1995) call the readings to determine the correctness of mathematical proofs 

and the mental processes associated with them “validations of proof”. The ability to validate proofs is a 

crucial skill for mathematicians, mathematics majors and teachers of mathematics but appears to be 

very challenging (e.g., Selden & Selden, 2003; Alcock and Weber, 2005; Powers, Craviotti, and Grassl, 

2010). Principles and Standards for School Mathematics (NCTM,2000) recommends that teachers 

should discuss the logical structure of students’ arguments and assist students in critiquing others’ 

arguments.  In deciding whether an argument constitutes a proof, a student or teacher should not only 

assess whether the proof techniques employed were acceptable to the mathematical community at 

large but also whether they were understood by the community in which the proof was situated 

(e.g.,Stylianides, 2007).  

Undergraduate mathematics majors need to validate proofs reliably both to check the validity of 

the mathematical arguments that they produce and to extract conviction from the proofs that are 

presented to them in their lectures and textbooks (e.g., Selden & Selden, 1995; Weber, 2004; Pfeiffer, 

2009). 

2. Review of the Literature

Research on ring-theoretic concepts is scarce, with the majority of the articles (e.g. Dubinsky

and Leron, 1995; Almeida,1999) focussing on group theory and, as a result, little is known about how 

students learn the basic ideas of ring theory. Among the conceptual ideas shared with groups are binary 

operations and associativity, but the current literature does not definitively address  the question of 

how students come to understand a formal algebraic structure lacking one or more properties of fields. 

Among the articles located were the following:  

Cook (2014) addresses student learning of the concepts of zero-divisor and elements with no 

multiplicative inverses in rings.  

Simpson and Stehlikova (2006) did a case study which examined how one student apprehended 

the commutative ring ℤ99. 

3. Theoretical Framework
In their study of 109 research-active mathematicians, Inglis, Mejía-Ramos, Weber, and Alcock

(2013) found further evidence that there is no universal agreement about what constitutes a valid 

proof. They concluded that mathematicians’ standards of validity differ. To describe what it means to 

write proofs, this study draws on the work of Selden and Selden (2009) as a framework. Selden and 
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Selden define five aspects of a proof that they claim must be attended to when constructing proofs with 

meaning: 

1. The Hierarchical Structure, which includes knowing what the proof has to accomplish and

coordinating any sub-proofs or constructions, including lemmas.

2. The Construction Path, which is the means for actually creating the proof (as distinct from the

way the proof is written for publication). The description of the construction path relies on the

concept of an idealized prover who, as Selden and Selden (2009) described, “never erred or

followed false leads” (p.340).

3. The Proof Framework, which encompasses the conventions of proving things in mathematics

but does not require understanding the meaning of any of the terms. For example, it includes

the logical structure of different types of proofs (direct, contradiction, and contrapositive), as

well as the concepts of hypotheses and conclusions.

4. The Formal- Rhetorical part of a proof, which requires primarily behavioural knowledge to

complete. As Selden and Selden (2009, p.344) argue,” it is not important that a student be able

to articulate such behavioural knowledge, it is important that he/she can act on it”. It includes

the ability to do algebraic and technical symbolic manipulations within the structure of the

proof system such as those required to deal with quantification or logical implication. This

behavioural knowledge includes knowing that if a theorem says, “For all real numbers” then the

proof should start by introducing an arbitrary real number, “Let x be a real number” (Selden

and Selden, 2009, p. 343).

5. The Problem-Centered part of the proof, which includes determining the key idea(s) and

coordinating aspects of the proof (especially if they include nonstandard argument structures),

and requires what Selden and Selden (2009, p.334) call “conceptual knowledge, mathematical

intuition, and the ability to bring to mind the ‘right’ resources at the ‘right time’”.

Based on the Selden and Selden (2009) framework, eight common criteria were identified. The 

eight criteria together with their contributing weight to the mark allocation for a proof are 

summarized in Table 1. The line number refers to the line in the proof submitted by the students. 

Table 1 Criteria and mark allocation  

Criteria Mark allocation    Line number 
1. The hypothesis is written as a complete sentence in which the words “for all”
and “for some” are used appropriately. (Seldon and Seldon , No 2, 3, 4)   1 or 0 
2. The student knows how to start a proof (direct, contradiction, or 
contrapositive).  For example, if a theorem says “For all real numbers…” then
the proof should start by introducing an arbitrary real number, “Let x a real 
number…..”The student can connect this to the hypothesis.  ( Seldon and Seldon , 
No 1, 2, 4 , 5) 

  2 or 1 or 0 

3. The hypothesis is correctly applied.  ( Seldon and Seldon , No 2, 5) 1 or 0 
4. Definitions are correctly translated from the ring to the quotient ring e.g. 
square roots of elements, zero divisor, nilpotent element, invertible elements,
Boolean ring. ( Seldon and Seldon , No 2, 5) 

1 or 0 

5. The rules for equality of cosets in A/J are correctly applied (not important to
state the rules).  (Seldon and Seldon , No 2, 4)   1 or 0 

6. The rules for addition and/or multiplication of cosets in A/J are correctly
applied (not important to state the rules).  (Seldon and Seldon , No 2, 4) 1 or 0 
7. The statements follow logically from one to the next using precise language 

and symbols e.g.  (with no gaps in the reasoning).   (Seldon and Seldon , No 

2, 3, 4) 

  2 or 1 or 0 

8. The conclusion is written as a complete sentence in which the words “for all”
and “for some” are used appropriately.
( Seldon and Seldon , No 3) 

1 or 0 
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4. Theoretical background

The present study examines students’ understanding and application of certain concept

definitions in proving ring-theoretic results in an abstract algebra course. Two examples of such 

concepts and their definitions are as follows (see Appendix): 

(a) Concept definition. An ideal J of a ring A is called primary  iff for all a, b ∈ A, if ab ∈ J, then

either a ∈ J or bn ∈ J for some positive integer n.

(b) Concept definition.  An ideal J of a ring A is called semi-prime iff it has the following

property: For every a ∈ A, if an ∈ J for some positive integer n, then necessarily a ∈ J.

The property of J mentioned in both these examples has an equivalent definition in terms of the 

elements in the quotient ring A/J. For example, (a) every zero divisor in A/J is nilpotent iff J is primary; 

(b) J is semi-prime iff A/J has no nilpotent elements (except zero).

In the research, students were given the task of proving such equivalent definitions of a 

property of the ideal J in terms of the elements in the quotient ring A/J. Concepts, such as the ones 

mentioned above, were unfamiliar to the students. 

5. Research Objectives

The main objectives of the study were to improve class participation and to investigate how

students prove the equivalence of definitions of non-familiar concepts in which inferences were largely 

based on definitions of concepts and some elementary properties of A/J, including rules for equality of 

elements (cosets) in A/J and rules for adding and multiplying cosets. Thus proof was used in this 

research to assess students’ understanding of unfamiliar concepts and their equivalent definitions in 

terms of elementary properties of the elements of A/J. This was afforded by the problems selected for 

this research (see Appendix).  

6. Participants

The participants in this research were third-year Abstract Algebra students (n = 16) at a

university in the Western Cape province of South Africa. All students had passed a semester of 

introductory Abstract Algebra that included an introduction to proofs, a semester of Linear Algebra as 

well as a course in Group Theory covering the material presented in the first sixteen chapters of the 

prescribed textbook by Pinter, C.C (1990), A Book of Abstract Algebra (Second Edition). 

7. Research Methodology

One of eight problems on ring-theoretic statements from Pinter, C.C (1990) was allocated

randomly to two students. For a ring A, and an ideal J of A, the problems all try to answer the question 

of how properties of J transfer to properties of the quotient ring A/J. In all eight problems, the property 

of J has an equivalent description in terms of the elements in A/J. Students were then given the task of 

proving this equivalence.

The sixteen students in the class were paired. Each pair of students was allocated a problem. 

The students were given time over a weekend to complete and hand in their proof for marking. In the 

next three weeks, time was given in the tutorial class for each pair of students to present their proof to 

the rest of the class on the chalkboard. The instructor and the class critiqued the arguments presented 

and students were encouraged to comment on the structure of the proof, style of writing (e.g. the 
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statements follow logically from one to the next using precise language and symbols, writing complete 

sentences with the correct use of quantifiers “for all” and “for some” and leading to a conclusion), the 

correct use of definitions and assumptions, validity of the arguments presented or whether there were 

any gaps in the reasoning.  

Following the validation process, the presenting group was given an opportunity to rethink the 

concepts and proof steps and then to resubmit their proof for marking. Both the original proofs and the 

resubmitted proofs were retained for use in the research. 

An unannounced test with the instruction that they could do any two of the eight problems that 

they worked on, including their own problem, was given the week following the last presentation. 

Three weeks later one of the eight problems was selected by the instructor as a final examination 

question for the course. A summary of the procedure is presented in Figure 1. 

Figure 1. Procedure used for proof development and evaluation 

8. Assessing the validity of the proofs based on the theoretical framework

In what follows we give examples of our expectation of a proof showing the equivalence of two

definitions of a certain ring-theoretic concept. We used Exercises E3 and G3 in the Appendix. We focus 

more on the structure of the proof. 

E3. A/J is a Boolean ring iff x2−x ∈ J for every x ∈ A. (A ring S is called a Boolean ring iff s2 = s for 

every s ∈ S.) 

Proof: Assume A/J is a Boolean ring [X2 = X, for every X ∈ A/J] [Hypothesis]. 

Let x be any fixed but arbitrarily chosen element of A [Comes from knowing what to prove]. 

Consider the element J + x ∈ A/J [Connection to the hypothesis]. 

 By the hypothesis, (J + x)2 = J + x [Application of the hypothesis & definition of Boolean ring]. 

Therefore J + x2 = (J + x)2 = J + x [By the rule for multiplication of cosets in A/J]. 

⇒ x2−x ∈ J [By the rule for equality of cosets in A/J].

This proves that x2−x ∈ J for every x ∈ A [Conclusion].

Conversely, assume that x2−x ∈ J, for every x ∈ A [Hypothesis].

Let X be any fixed but arbitrarily chosen element of A/J [Comes from knowing what to prove].

Then X = J + a for some a ∈ A [Connection to the hypothesis].

By the hypothesis, a2−a ∈ J [Application of the hypothesis].

Hence J + a2 = J + a [By the rule for equality of cosets in A/J].

Therefore X = J + a = (J + a)2 [By the rule for multiplication of cosets in A/J].

This proves X2 = X.

Since X was arbitrarily chosen, A/J is a Boolean ring [Conclusion].

G3. An ideal J of a ring A is called primary iff for all a, b ∈ A, if ab ∈ J, then either a ∈ J or bn ∈ J for 

some positive integer n. Prove that every zero divisor in A/J is nilpotent iff J is primary. 

Assume J is a primary ideal [Hypothesis]. 

Let X be any fixed but arbitrarily chosen zero divisor in A/J [Comes from knowing what to 

prove]. 

2. Students 

present proof

1. Pairs Allocated 

Problem

3. Validation by 

peers and tutor

4. Students 

Resubmit proof 

for grading

5. Evaluation 

Test 1, Test 2 

Exam grading
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Then X = J + a where a ∉ J and there exists J + b ∈ A/J, where b ∉ J such that (J + a)(J + b) = J 

[Definition of zero divisor in A/J]. 

Therefore J = (J + a)(J + b) = J + ab [By the rule for multiplication of cosets in A/J]. 

⇒ ab ∈ J [By the rule for equality of cosets in A/J].

Therefore ba ∈ J since A is a commutative ring [Using assumptions].

It follows that b ∈ J or an ∈ J, for some positive integer n, since J is a primary ideal [Application of

the hypothesis].

But b ∉ J and so an ∈ J. Therefore J + an = J [By the rule for equality of cosets in A/J].

Now J = J + an = (J + a)(J + a)…(J + a)   n times = (J + a)n [By the rule for multiplication of

cosets in A/J].

This shows that X = J + a ∈ A/J is nilpotent [Definition of nilpotence of J + a ∈ A/J].

Since X is an arbitrarily chosen zero divisor, we conclude that every zero divisor is nilpotent

[Conclusion].

Conversely, assume every divisor of zero in A/J is nilpotent [Hypothesis]. 

Let a and b be any two arbitrarily chosen elements in A with ab ∈ J 

[Comes from knowing what to prove].  

This is true if either a ∈ J or b ∈ J; so we assume a ∉ J and b ∉ J [Using assumptions]. 

Since ab ∈ J, it follows that J + ab = J [By the rule for equality of cosets in A/J]. 

But then (J + a)(J + b) = J + ab = J [By the rule for multiplication of cosets in A/J]. 

Since a ∉ J and b ∉ J, it follows that J + a ≠ J and J + b ≠ J 

[By the rule for equality of cosets in A/J]. 

Therefore J + b is a divisor of zero in A/J [Definition of zero divisor in A/J]. 

⇒(J + b)n = J for some positive integer n  [Application of the hypothesis]. 

Now J = (J + b)n = (J + b)(J + b)…(J + b) for n factors = J + bn  

[By the rule for multiplication of cosets in A/J]. 

⇒ bn ∈ J , for some positive integer n [By the rule for equality of cosets in A/J].

This proves that J is a primary ideal [Conclusion].

It can be seen by comparison that the two model proofs of the statements in E3 and G3 are very 

similar in structure. 

9. Class presentations by students

The presentations were made in the lecture room, which had two columns of desks arranged in 

6 rows, each having 3 to 4 desks. The chalkboard was along the width of the lecture room on the front 

wall. The observer sat at the back with a good overview of the proceedings in the class and took notes 

and recorded transcripts of the discourse. There were occasional comings and goings as students 

arrived late or left to take calls and some side conversations between students preparing for their 

presentations. 

Triangulation was done by going over the recorded class observations, recorded conversations 

and written notes made during the presentations. These were double checked with the instructor after 

the lecture. 

Each pair of students came to the chalkboard and wrote out their proof, one presented the 

direct proof and the other member of the pair presented the converse.  A presentation for the proof of 

Problem G3 ran as shown in Table 2. The step numbering was added by the researcher to make it easy 

for reference in the discussion that follows. 
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The proofs presented were highly symbolic and punctuated with rhetorical questions as the 

instructor probed students recall and understanding of previously presented material.  The discourse 

used can be categorised in terms of the highly technical vocabulary used e.g. nilpotent, zero divisor, 

coset, arbitrary elements, etc. the assumptions, e.g. suppose every element in A/J is its own negative.., 

and definitions, e.g. since J is a primary ideal J + an = ….. 

Table 2 

 Direct proof presented by Student A. Converse presented by Pair Partner – Student B. 
1. Suppose J is a primary ideal.
2. Let J + a  A/J be a zero divisor 
3. then there exists b  A such that (J + a)(J + b) = J , b  J 
4. (J + a)(J + b) = J + ab = J 
5. ⟹ ab  J 
6. an  J for some positive integer n since J is a primary ideal 
7. J + an = (J + a)(J + a)…(J + a) = (J + a)n = J 
8. J + a   A/J is nilpotent 

1. Suppose every zero divisor in A/J is nilpotent. 
2. Let a, b  A and  ab   J 
3.  (J + a)(J + b) = J + ab = J 
4. If a  J then J + b is a zero divisor in A/J 
5. ∴ (J + b)n = J 
6. but  (J + b)n = (J + b) (J + b)…..(J + b)   n times 
7. = J + bn = J 
8. ⟹ bn  J 
9. J is a primary ideal.

Student A then goes over the direct proof verbally and the class participates by giving their 

comments. 

Prof: “Read the problem again. In line1 should you use suppose or assume?” 

Stud A: “Assume allows us to prove something else. If we suppose … then we can end with a 

contradiction” 

Prof: “Some people use “suppose” interchangeably with “assume”. So it is not wrong to say 

“suppose”. But you are right, we use “suppose” when we do proofs by contradiction.” 

Student A decides to amend line 1 and write “Assume that ….” 

Prof: “Is your definition of zero divisor in lines 2 and 3 correct?” 

Student A: “It must be a ∉ J”. 

Prof: “Can you explain how you come to conclude that an J for some positive integer n using the 

fact that J is a primary ideal” in line 6. 

Student A is unable to explain the reason for this conclusion. The question is directed to the 

class. 

Prof: “Look at the definition of a primary ideal. What can you conclude from line 5?” 

Student B: “either a ∈ J or bn ∈ J for some positive integer n.”  

Prof: “But this is not what we want, is it? What do we want?” 

Student A:”either b ∈ J or an ∈ J for some positive integer n.”  

Prof: “Are there any missing steps between lines 5 and 6?” 

Student C:  (comes to the board and writes) 

(J+a)(J+b)  

= (J+b)(J+a) 

= ba 

 (ba)n  J 

So b  J or a  J 

Prof: “Is this correct?” No response from the class. 
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Prof: “It is incorrect but there is a hint in what student C wrote. If we knew that ba J then what 

could we conclude from this?”   

Student A:”b ∈ J or an ∈ J, by applying the definition of primary ideal.” 

Prof: “What do we know about the ring A? What assumptions can we make about A? Look at the 

statement of the problem.” 

Student D: “A is a commutative ring.” 

Student D:”ab = ba” 

Prof: “So where is ba?” 

Student D:”ba ∈ J.” 

Prof: “What can we now conclude?” 

Student A:”b ∈ J or an ∈ J, by applying the definition of primary ideal.” 

Prof: “What do we know about b?”  

Student B: “b  J and  an  J” 

Prof:” Look at the rest of the steps. I suggest that line 7 be split into two lines to make the 

reading clearer.” 

Prof: “Write J = J + an, from line 6 by the rule for equality of cosets 

   = (J + a)(J + a)…(J + a) = (J + a)n ,by the rule for multiplying cosets.” 

The main points emerging from this discussion are that the proof assumes a thorough 

knowledge of the mathematics involved as well as methods of proof. In lines 2 and 3, Student A 

incorrectly gives the definition of a zero divisor in A/J. In line 6 the incorrect application of a definition 

leads to a gap in the logical reasoning. This could be remedied by the knowledge and application of 

assumptions in the statement of the problem, viz., A is a commutative ring.  

A similar discussion followed the converse proof presented by Student B.  

Student B started by changing the” Suppose” to “Assume” in line 1.  

Prof: “Explain the reasons for your line 3.”  

Stud B:”The left equality is multiplying two cosets and the right equality is by the rule for 

equality of cosets.” 

Prof: “Can you explain Line 4.” 

Stud B: No response. 

Prof: “Look at line 2. What happens if a  J or b  J?” 

Stud C:“If a  J or b  J then ab ∈ J.”  

Prof: “So what assumptions can we make about a and b?”  

Student C: ”a ∉ J and b ∉ J”.  

Prof: “What do we conclude from this?” 

Stud B:”J ≠ J + a in A/J and J + b ≠ J in A/J” 

Prof: “What can we now conclude from line 3?” 

Student B: “J + b is a divisor of zero in A/J”. 

Prof: “Explain your statement in line 5.” 

Student B: “J + b is nilpotent by the hypothesis; so (J + b)n = J for some positive integer n.” 

Prof: “For the remaining lines, add reasons.” 

The converse proof presented by Student B required the application of different methods of 

proof viz., proof by cases. In a few statements conclusions are written without giving any reasons, for 

example, in line 5, the fact that J + b is nilpotent follows from the hypothesis. 

As an illustration we now apply the rubric to the proof submitted by student A and student B. 

The line number refers to the line in the proof submitted by the students (see Tables 3 and 4). 
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Table 3: Group 1 (Students A and B)(Direct Proof) 

Criteria Mark allocation    Line number 

1. The hypothesis is written as a complete sentence in which the words “for all”

and “for some” are used appropriately. (Seldon and Seldon , No 2, 3, 4) 

1 1 

2. The student knows how to start a proof (direct, contradiction, or 

contrapositive).  For example, if a theorem says “For all real numbers…” then

the proof should start by introducing an arbitrary real number, “Let x a real 

number…..”The student can connect this to the hypothesis.  ( Seldon and Seldon , 

No 1, 2, 4, 5) 

1 2 

3. The hypothesis is correctly applied.  ( Seldon and Seldon , No 2, 5) 0 6 

4. Definitions are correctly translated from the ring to the quotient ring e.g. 

square roots of elements, zero divisor, nilpotent element, invertible elements,

Boolean ring. ( Seldon and Seldon , No 2, 5) 

1 3 

5. The rules for equality of cosets in A/J are correctly applied (not important to

state the rules).  (Seldon and Seldon , No 2, 4) 

1  5 , 7 

6. The rules for addition and/or multiplication of cosets in A/J are correctly

applied (not important to state the rules).  (Seldon and Seldon , No 2, 4) 

1 4, 7 

7. The statements follow logically from one to the next using precise language 

and symbols e.g.  (with no gaps in the reasoning).   (Seldon and Seldon , No 

2, 3, 4) 

1 5, 6 

8. The conclusion is written as a complete sentence in which the words “for all”

and “for some” are used appropriately.  ( Seldon and Seldon , No 3) 

0 N/A 

Table 4: Group 1 (Students A and B)(Converse Proof) 

Criteria Mark allocation    Line number 

1. The hypothesis is written as a complete sentence in which the words “for all”

and “for some” are used appropriately. (Seldon and Seldon , No 2, 3, 4) 

  1 1 

2. The student knows how to start a proof (direct, contradiction, or 

contrapositive).  For example, if a theorem says “For all real numbers…” then

the proof should start by introducing an arbitrary real number, “Let x a real 

number….”. The student can connect this to the hypothesis.  ( Seldon and Seldon 

, No 1, 2, 4 , 5) 

1 2 

3. The hypothesis is correctly applied.  ( Seldon and Seldon , No 2, 5) 1 5 

4. Definitions are correctly translated from the ring to the quotient ring e.g. 

square roots of elements, zero divisor, nilpotent element, invertible elements,

Boolean ring. ( Seldon and Seldon , No 2, 5) 

0 4 

5. The rules for equality of cosets in A/J are correctly applied (not important to

state the rules).  (Seldon and Seldon , No 2, 4) 

1  3 , 8 

6. The rules for addition and/or multiplication of cosets in A/J are correctly

applied (not important to state the rules).  (Seldon and Seldon , No 2, 4) 

1 3, 6 

7. The statements follow logically from one to the next using precise language 

and symbols e.g.  (with no gaps in the reasoning).   (Seldon and Seldon , No 

2, 3, 4) 

1 3, 4 

8. The conclusion is written as a complete sentence in which the words “for all”

and “for some” are used appropriately.  ( Seldon and Seldon , No 3) 

1 9 

Total:  

After the students had presented their proofs to the rest of the class, they were expected to 

reflect on their proofs and to relook the steps required in the proving process and to resubmit a revised 

20 

13 
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proof to the instructor for marking. Such actions often occur in constructing the formal-rhetorical part 

of a proof (see Table 5). 

10. Resubmitted proof

Table 5 

Direct proof  Converse  
1. Assume  J is a primary ideal
2. and let J + a   A/J be a zero divisor ,
3. ,then there exists J + b ∈ A/J, b ∉ J such that (J + a)(J + b) = J  
4. (𝐽 +  𝑎)(𝐽 +  𝑏)  =  𝐽 +  𝑎𝑏 =  𝐽
5. ⟹ 𝑎𝑏  𝐽
6. Since 𝐴 is a commutative ring then 𝑏𝑎 ∈  𝐽
7.  and 𝑏 ∈  𝐽 or 𝑎𝑛 ∈  𝐽 since 𝐽 is a primary ideal for some
positive integer n 
8. 𝑏 ∉  𝐽  so 𝑎𝑛 ∈  𝐽
9. ⇒ 𝐽 +  𝑎𝑛 =  𝐽
10. 𝐽 +  𝑎𝑛 =  (𝐽 +  𝑎)(𝐽 +  𝑎) … (𝐽 +  𝑎)  =  (𝐽 +  𝑎)𝑛 =  𝐽
11. 𝐽 +  𝑎   𝐴/𝐽 is nilpotent 

1. Assume every zero divisor in A/J is nilpotent. 
2. Let a, b  A and  ab   J  
3.  (J + a)(J + b)= J + ab =J 
4. If  𝑎 ∈  𝐽 or 𝑏 ∈  𝐽 then 𝑎𝑏   𝐽
5. So we can assume 𝑎  𝐽 and 𝑏  𝐽
6. ⟹ 𝐽 +  𝑎 ≠  𝐽 𝑎𝑛𝑑 𝐽 +   𝑏 ≠  𝐽
7. therefore 𝐽 +  𝑏 is a zero divisor in 𝐴/𝐽
8. ⇒ (𝐽 +  𝑏)𝑛 =  𝐽
9. but  (𝐽 +  𝑏)𝑛 =  (𝐽 +  𝑏) (𝐽 +  𝑏) … . . (𝐽 +  𝑏)   𝑛 times 
10. =  𝐽 +  𝑏𝑛 =  𝐽
11. ⟹ bn  J 
12.  J is a primary ideal. 

Although the suggested changes in the validation of the initial proof have to a large extent been 

incorporated in the re-submitted proof, the readability can be improved by giving reasons for 

conclusions and writing full sentences. For example, in the converse proof, J + b is a zero divisor in A/J 

by line 3. Line 8 should read “ ⇒(J + b)n = J for some positive integer n; because we assume all divisors 

of zero are nilpotent. Line 3 should start with the implication symbol “ ⟹”. The rubric can now be 

applied to the re-submitted proof as was done with the original proof. 

The marks obtained for the resubmitted proof by all eight groups were higher than for the 

original proofs. This begs the question whether the validation process led to an improved 

understanding of proving statements of “if, and only if” type. It was for this reason that the students 

were given an unannounced test with the instruction that they could do any two of the eight problems 

that they worked on, including their own problem. As expected, 14 of the 16 students attempted their 

own problem and one new problem. Three weeks later one of the eight problems was selected by the 

instructor as a final examination question for the course. In the next section we analyse the marks 

obtained by the students. 

11. Data Analysis

Sixteen of the seventeen third-year mathematics class attending the Abstract Algebra module 

were part of this intervention aimed at using critiques to develop skills in proof writing.  One student 

dropped out and did not attempt the test or exam questions. Due to the small group size and the non-

normality of the data, non-parametric tests are reported. Table 6 presents the descriptive statistics of 

the marks obtained in the assignments, the test questions and related exam question.  All proofs were 

evaluated by using the rubric explained in Table 1. 
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Table 6: Descriptive statistics of the rubric marks (as %) obtained 

n mean Std dev 95% CI mean median 95% CI median min max 

Assignment 16 46.88 16.46 38.11 - 55.64 50.00 31.25 - 54.52 25.00 75.00 

Resubmitted 

assignment 

16 64.84 12.68 58.09 - 71.60 62.50 56.25 - 69.28 50.00 87.50 

Test problem 1 16 54.30 17.34 45.06 - 63.54 56.25 47.74 - 68.75 6.25 75.00 

Test problem 2 16 44.92 21.20 33.63 - 56.21 53.13 22.74 - 62.50 6.25 68.75 

Exam question G1 16 29.69 24.31 16.73 - 42.64 21.88 12.50 - 56.25 0.00 62.500 

For the initial class assignment done in pairs, students scored on average 47% (median=50%, std 

dev=16.46), whereas the re-submission mark after critique was 65% (median=63%, std dev=12.68) 

(see Table 6).   A significant improvement is noticeable (Wilcoxon signed ranks test=68; p=0.0001).  

Students were asked to complete two such questions in the first test and fourteen of the sixteen 

(87.5%) attempted the proof that they had developed during the assignment and critique sessions.  

Twelve students (75%) passed the first test question. The second test question was selected from the 

pool of questions that other students had developed as part of their training.  Nine of the students 

(56%) passed the second test question, which confirms that most students were able to transfer the 

knowledge on how to construct a proof from one question to another.  

For the first test problem students obtained an average of 54% (median= 56%, std dev=17.34) 

with twelve of the sixteen passing this question.  For the second test problem students scored on 

average 45% (median=53%, std dev=21.20) with nine of the twelve obtaining more than 50% for the 

question.  No difference was seen between the mark obtained for the first test problem (more familiar 

question) when compared to the resubmitted class assignment’s mark (Wilcoxon signed ranks test=23; 

p=0.2048), but students scored significantly less in the second test question (less familiar question) 

when compared to the resubmitted class assignment’s mark (Wilcoxon signed ranks test=31; 

p=0.0295).  

The final exam paper was written a few weeks later which contained one question where 

students had to develop a proof.  Again this question was selected from the original questions provided 

to students at the start of the intervention.  This exam question was answered by all the students and 

the average was 30% (median=22%, std dev=24.31) but only 6 students (37.5%) passed this question. 

The mark obtained in the exam was significantly lower when compared to the first test question’s mark 

(Wilcoxon signed ranks test=55; p=0.0030) as well as the second test question’s mark (Wilcoxon 

signed ranks test=34; p=0.0129). 

Table 7 shows the descriptive statistics of the marks separately for those who failed or passed the 

exam question.  When considering the 95% confidence intervals (CI) for the median of the exam pass 

and exam fail groups; the initial assignment submission, the resubmission and the test marks do not 

differ as these confidence intervals between the two groups overlap.   

Students who passed the exam question, obtained higher median percentages in both tests 

compared to those who failed the exam question (Test1=69% and Test2=62% for those who passed; 

Test1=53% and Test2=41% for those who failed the exam)(see Table 7). 
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Table 7: Descriptive statistics for students who failed or passed the exam question 

Descriptive statistics of marks for those who failed or passed the exam 

Failed Exam Passed Exam 

N Mean Median 95% CI median N Mean Median 95% CI median 

Assignment 10 48.75 46.88 31.25 - 69.06 6 43.75 50.00 25.00 - 60.07 

Resubmitted assignment 10 67.50 62.50 59.22 - 84.53 6 60.422 59.38 50.00 - 77.61 

Test problem 1 10 50.63 53.13 43.75 - 62.50 6 60.42 68.75 36.10 - 68.75 

Test problem 2 10 39.38 40.63 18.75 - 56.25 6 54.17 62.50 15.96 - 68.75 

Exam question G1 10 13.125 12.50 0.00 - 22.34 6 57.29 56.25 51.21 - 62.50 

The individual marks of students who passed and failed the exam are shown in Figure 2.  From 

Figure 2 it can be seen that in general student marks improved from the initial assignment mark to the 

re-submitted assignment’s mark.  Except for one student, all the other students who failed the exam, 

scored lower percentages in the exam question than in the two test questions.  When focusing on those 

who passed the exam, one student performed better in the exam compared to all the prior marks.  In 

general, for the group who passed, the exam mark was slightly lower than the test marks. 

Figure 2: Marks ordered by exam mark 

When inspecting the results of the Spearman correlation coefficient (Table 8) it can be seen that 

only two of the marks were significantly correlated.  The mark obtained in the first test problem is 

significantly correlated with the mark obtained in the second test question (Spearman 

coefficient=0.773, p=0.0004).  This suggests that students were able to carry over knowledge on how 

to develop a proof from one problem to another similar type of problem in the test. 

None of the marks obtained in earlier evaluations were correlated with the mark obtained in the 

exam question. 
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Table 8: Spearman correlations of the marks obtained 

Spearman Correlation Coefficients, N = 16 

Prob > |r| under H0: Rho=0 

Resubmitted 

assignment Test1 Test2 Exam 

Assignment 0.44777 

0.0820 

-0.10419 

0.7010 

0.21533 

0.4232 

-0.15119 

0.5762 

Resubmitted assignment 1.00000 -0.31427 

0.2358 

0.17693 

0.5121 

-0.16410 

0.5437 

Test problem 1 1.00000 0.77294 

0.0004* 

0.16059 

0.5524 

Test problem 2 1.00000 0.35132 

0.1821 

*Significant at a 1% level of significance

When considering each of the rubric criteria (Table 1) student groups could score between zero and 

two for each criteria.  Each criteria is shown for the initial assignment mark followed by the 

resubmission mark for that criteria (a total of eight aspects are shown in Figure 3).  It can be seen that 

criteria 5 and 6 were mostly achieved by the students.   In criteria 7 students scored the lowest with no 

improvement in the resubmitted score for some questions (E1, E2, E4, G1 and G4).  Criteria 8 also 

showed no improvement in the resubmitted score for a few questions (E1, E4 and G2). 

Figure 3: Eight rubric criteria shown for each problem (initial assignment and resubmission) 
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12. Significance and directions for future study

Proofs in abstract algebra have well defined structures that follow a set of logical steps that link

with one another, starting from hypotheses and leading to a conclusion by only using axioms, 

definitions, previously proved results and rules of inference. Research has shown how students’ 

inability to start on a proof was symptomatic of many other difficulties and that they relied on 

memorizing proofs because they had not understood what a proof is nor how to write one (Moore, 

1994). Research also revealed that both students and teachers of mathematics have difficulty in 

accurately determining whether an argument constitutes a valid proof (e.g. Alcock & Weber, 2005; 

Selden & Selden, 2003).  In this research students learned to do proofs of mathematical statements that 

required only short deductive proofs; thus preparing them for the transition to more advanced proofs 

that require more complex cognitive processes. In addition, an attempt was made to actively engage 

students in the validation of, not only their own proof, but also the proofs of their peers. This was 

guided by comments made by the instructor as the process of validation unfolded. 

This research has laid the foundation for a follow-up study which will attempt to answer the following 

questions: 

 What is the impact of collaborative work on proving a mathematical statement?

 What is the impact of the validation process on proving a mathematical statement?
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15. Appendix

E. Properties of Quotient Rings A/J in Relation to Properties of J (Pinter, p 197)

Let A be a ring and J an ideal of A. Prove each of the following: 

1. Each element of A/J has a square root iff for every x ∈ A, there is some y ∈ A such that x−y2 ∈ J.

2. Every element of A/J is its own negative iff x+x ∈ J for every x ∈ A.

3. A/J is a Boolean ring iff x2−x ∈ J for every x ∈ A. (A ring S is called a Boolean ring iff s2 = s for

every s ∈ S.)

4. Every element of A/J is nilpotent iff J has the following property: for every x ∈ A, there is a

positive integer n such that xn ∈ J.

Note this is problem 5 in exercise E on page 197.

G. Further Properties of Quotient Rings in Relation to Their Ideals (Pinter, p 198)

Let 𝐴 be a ring and 𝐽 an ideal of 𝐴. In parts 1-3 assume that 𝐴 is a commutative ring with identity. 

1. Prove that 𝐴/𝐽 is a field iff for every element a ∈ A, where a ∉ J, there is some b ∈ A such that ab 

– 1 ∈ J. 

2. Prove that every nonzero element of A/J is either invertible or a divisor of zero iff the following

property holds, where a, x ∈ A: For every a ∉ J, there is some x ∉ J such that either ax ∈ J or ax 

−1 ∈ J. 

3. An ideal J of a ring A is called primary iff for all a, b ∈ A, if ab ∈ J, then either a ∈ J or bn ∈ J for

some positive integer n. Prove that every zero divisor in A/J is nilpotent iff J is primary.

4. An ideal J of a ring A is called semi-prime iff  it has the following property: For every a ∈ A, if an ∈

J for some positive integer n, then necessarily a ∈ J. Prove that J is semi-prime iff  A/J has no

nilpotent elements (except zero).
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