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1. Introduction

Let H be a real Hilbert space and K a nonempty, closed and convex subset of H. A mapping T : K — K
is said to be nonexpansive if

ITx =Tyl < |lx =yl ¥ xy €K @
T : K — Kis said to be a contraction if there exists L € (0,1) such that
ITx = Ty|| < Lllx —yll, ¥V x,y €K, )

and T : K — K s said to be x-strictly pseudocontractive in the sense of Browder and Petryshyn [4] if for
0<k<1,

1T = Tyl? < lx —yl> + (I - T)x — (I - Ty|* ¥ x,y € K. ©)
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Clearly (3) is equivalent to

1—KH

(Tx = Ty,x —y) < llx =y~ —

(I-T)x—(I-T)yl* 4)

See [1,4,21,31]and references therein, for more details on strictly pseudocontrative mappings.
The set of fixed points of T is the set F(T) = {x € K: Tx = x}.

A bounded linear operator D on H is called strongly positive if there exists § > 0 such that
(Dx, x) > 4||x||?, Vx € H.

Let K be a nonempty closed and convex subset of a real Hilbert space H. The metric projection from
H onto K denoted by P, is the the map that assigns to each x € H the unique point Pxx € K with the

property
||x = Pix|| = inf{[|x — y[[, vy € K}

The following also holds for Px:
(i). Px is nonexpansive.
(i). (y — Px(x),x — Px(x)) <0, Vx € Hy € K.

Let f : H — H be a single valued nonlinear mapping and let M : H — 2H be a set valued mapping.
The Monotone Variational Inclusion Problem (MVIP) is to find x € H such that

0 € f(x) + M(x), ®)

where 0 is the zero vector in H. The set of solutions to the MVIP (5) is denoted by I (f,M ). If f=0,
then MVIP (5) reduces to the following Variational Inclusion Problem (VIP): find x € H such that

0 € M(x), (6)

For further details on VIP see for example [27] and some of the references therein.
A mapping T : H — H is said to be
(i) monotone, if

(Tx —Ty,x —y) >0, Vx,y € H;

(ii) a-strongly monotone, if there exists a constant « > 0 such that
(Tx = Ty,x —y) > af|x —y|?, Vx,y € H;
(iii) B-inverse strongly monotone(p-ism), if there exists a constant > 0 such that
(Tx — Ty, x —y) > Bl|Tx — Ty||?, Vx,y € H;
(iv) firmly nonexpansive, if
(Tx — Ty,x —y) > ||Tx — Ty||%, Vx,y € H.

A set valued mapping M : H — 2H is called monotone if for all x,y € H withu € M(x) and v € M(y)
then
(x—y,u—v) >0
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A monotone mapping M is said to be maximal if the graph of M, denoted by G(M) is not properly
contained in the graph of any other monotone mapping, where for multi valued mapping M,

G(M) ={(x,y) :y € M(x)}.

It is well known that M is maximal if and only if for (x,u) € H x H, (x —y,u —ov) > 0 for all
(y,v) € G(M) implies u € M(x). The resolvent operator |} associated with M and A is the mapping
]ﬁ/[ : H — H defined by

JM(x) = (I+AM)"1x, x € H,A > 0. ?)

It is a common knowledge that the resolvent operator JM is single valued, nonexpansive
and l-inversely monotone (for example see [3]) and the solution of (5) is a fixed point of
JM(I = Af), VA > 0 (see for example [17]). If f is p-inversely strongly monotone mapping
with 0 < A < 2y, then clearly JM(I — Af) is nonexpansive and I(f, M) is closed and convex.

Let Hy and H; be real Hilbert spaces. Let f; : H] — Hy, f> : Hy — Hj be inverse strongly monotone
mappings and B : Hy — 2H1 B, : H, — 22 be maximal monotone mappings. Let A : Hy — H»
be a bounded linear mapping. The Split Monotone Variational Inclusion Problem (SMVIP) is to find
x* € Hy such that

0€ filx") +Bi(x7) ®)
and
y* = Ax" € Hy such that 0 € f,(y*) + B2(y"). )
We shall denote by (2 the solution set of (8) - (9), that is
Q={x"€H:0€ f1(x*) + B1(x*) and y* = Ax* € H, such that 0 € f,(y*) + B2(y")}.

Moudafi in [23] first introduced the SMVIP (8) - (9) and proposed an iterative method for
solving it. In [23], Moudafi noted that the SMVIP is a generalisation of the split fixed point
problem, split variational inequality problem, split zero problem and split feasibility problem
(see [7-10,15,23-26,29]), which have been studied extensively by many authors and applied to
solving many real life problems such as modelling intensity-modulated radiation therapy treatment
planning [9,10], modelling of inverse problems arising from phase retrieval and sensor networks in
computerised tomography and data compression [6,11].

Suppose fi = 0 and f, = 0 in SMVIP (8) - (9), we obtain the following Split Variational Inclusion
Problem (SVIP): Find x* € H; such that

0 € By(x*) (10)
and
y* = Ax* € Hp such that 0 € By(y"). (11)

Let the solution set of (10)-(11) be denoted be Q.
Byrne et al. [7] using the following iterative scheme: for a given xo € Hj the sequence {x, } generated
iteratively by;

Xpi1 = ]fl(xn + 'yA*(]f2 —1)Ax,), A >0,
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obtained a weak and strong convergence theorem for solving SVIP (10)-(11). Inspired by the work
of Byrne et al., Kazmi and Rizvi [16] proposed the following algorithm for approximating a solution
of SVIP (10)-(11) which is a fixed point of a nonexpansive mapping S: for a given xg € Hj, let the
sequences {u, } and {x,} be generated by

Up = ]fl (le + ’)/A* (])Biz - I)Axn)/ (12)
Xp+1 = &nf(xn) + (1 — ay)Suy,n >0,

and proved that both {u,} and {x,} converge strongly to z € F(S) N Q.. For more on variational
inclusion problem see [18,19].
Shehu and Ogbuisi [28] stated and proved the following theorem for solving SMVIP.

Theorem 1. Let Hy and Hy be two real Hilbert spaces and A : Hy — Hp be a bounded linear operator. Let
f1 : Hi — Hj be p-inverse strongly monotone mapping and f, : Hy — Hj be v-inverse strongly monotone
mapping. Let By : Hy — 2™ and By : Hy — 22 be multi-valued maximal monotone mappings. Let Q) be a
solution set of (8) - (9). Let S : Hy — Hj be a x-strictly pseudocontractive mapping and F(S) N Q) # O. Let
{xn} be the sequence generated for xy € Hy by

wy = (1 —ay)xy,
Yn = TN = Af) (wn + vA* (T2 (1= Afa) — 1) Awy), (13)
X1 = (1= Bu)yn + BuSyn, Vn >0,

where 0 < A < 2u,2vand v € (0, %) L is the spectral radius of the operator AA™ and A* is the adjoint of A.
Suppose {a, }oy_q and {Bn}5_ are real sequences in (0,1) satisfying the following conditions

(i) limy, 0 0y = 0, Zzozl &y = 00,

(i) 0 < liminf B, < limsup B, <1—x,

then {x,}$°_, converges strongly to p € F(S) N Q).

Recently, Deepho et. al [14] obtained the following result:

Theorem 2. Let Hy and Hj be two real Hilbert spaces and let C C Hy and Q C Hp be nonempty closed
convex subsets. Let A : Hy — Hp be a bounded linear linear operator. Let D be strongly positive bounded
linear operator on Hy with a coefficient T > 0. Assume that {T;}}., : C — Hj is a family of k;-strictly
pseudo-contraction mappings such that NN F(T;) N Qp # @. Suppose that f € Tlc with a coefficient p €
(0,1) and {171.(") N | are finite sequences ofpositiZfe numbers such that YN | 171.(") =1foralln > 0. Fora
given point xo € C, an, pu € (0,1) and 0 < T < 5, let {xn} be a sequence generated in the following:

= I (0 + P A* (22 — 1) Axy),
Yn = Buthn + (1= Bn) Ty 1n,iSittn, (14)
X1 = anTG(xy) + (I — @y D)yn, Vn > 1,

where A > 0 and v € (0, %), L is the spectral radius of the operator A* A and A* is the adjoint of A. Suppose
the following conditions are satisfied:

(CI) limy oty =0, Y o0 gty = 00and Y224 oy — 01| < 00,

(C2) ki < Bp <1< 1, limyyeo B =1landy ;. o |Bn— Br-1| < o0,

CHL LN, \175”) — "1 < oco. Then the sequence {x,} generated by (14) converges strongly to q €
NN F(T;) N Qp which solves the variational inequality

(D—=1f)q,q—p) <0,Yp € NN4F(T;) N Q.
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In this paper, we present a general algorithm which does not require prior knowledge of the operator
norm for solving split monotone variational inclusion problem, fixed point problem for a finite family
of strictly pseudocontractive mappings and certain variational inequality problem. The result of this
paper improve on the results of Shehu and Ogbuisi [28] and Deepho et. al [14] as follows:

1. The results of Shehu and Ogbuisi [28] and Deepho et. al [14] both require the knowledge of the
operator norm while the result of this paper does not require any knowledge of the operator norm.
2. The result of Deepho et. al [14] took f; and f; to be identically zero but the result of this paper does
not require f; and f, to be necessarily zero.

3. The result of this paper solve a variational inequality problem while the result of Shehu and Ogbuisi
[28] did not do so.

2. Preliminaries

We start by stating some important results we will need in sequel.

Lemma 1. [12,13] Let H be a Hilbert space and T : H — H a nonexpansive mapping, then for all x,y € H,

(x =Tx) = (y = Ty), Ty = Tx) < %H(Tx —x) = (Ty -y, (15)
and consequently if y € F(T) then
(x — Tx, Ty — Tx) < %HTx—tz. (16)
Lemma 2. Let H be a real Hilbert space. Then the following result holds
I+ yI1* < lx[* +2(y, x +y), ¥ x,y € H.
Lemma 3. Let H be a Hilbert space, then Vx,y € H and a € (0,1), we have
lacx + (1= a)y? = aflxl* + (1 = &) [y — a(1 = a) x — y||%.

Lemma 4. (Demiclosedness principle) Let K be a nonempty, closed and convex subset of a real Hilbert space
H. Let T : K — K be x-strictly pseudocontractive mapping. Then I — T is demi closed at 0, i.e., if x, — x € K
and x,, — Tx, — 0, then x = Tx.

Lemma 5. [30] Assume {a,} is a sequence of nonnegative real numbers such that
Apt1 < (1= yn)an +yndu, n >0,

where {7y, } is a sequence in (0,1) and {6, } is a sequence in R such that

(D) Z7 yn =

(it) imsup,,_, . 0n < 00r X5 [8n7u| < 0.

Then limy, 00 4, = 0.

Lemma 6. [17] Let M : H — 2H be a maximally monotone mapping and f : H — H be a Lipschitz
continuous mapping. Then the mapping G = M + f : H — 2H is a maximal monotone mapping.

Lemma 7. [22] Assume that D is a strongly positive linear operator on a Hilbert space with a coefficient 6 > 0
and 0 < p < ||D||L. Then ||I — pD|| < 1 — pé.
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Lemma 8. [1] Let C be a nonempty closed convex subset of a Hilbert space H. Let {T;}N, : C — H bea
finite family of k;- strictly pseudocontractive mappings and suppose {iyi}fi 1 s a positive sequence such that
YN 1 = 1. Then "N, n;T; is a k- strictly pseudocontractive mapping with k = max{k; : 1 <i < N}.

Lemma 9. [1] Let C be a nonempty closed convex subset of a Hilbert space H. Let {T;}}N., : C — H bea
finite family of k;- strictly pseudocontractive mappings and suppose {1;}X. | is a positive sequence such that
YN mi = 1. Then F(TN, n;T;) = NN, F(Ty).

Lemma 10. [1] Let C be a nonempty, closed and convex subset of a Hilbert space H. Assume that f : C — Ciis
a contraction with a coefficient p € (0,1) and D is a strongly positive linear bounded operator with a coefficient
5> 0. Then, for0 < 6 < %,

(x =y, (D=5f)x = (D =5f)y) = (5 —dp)l[x —ylI*>, Vx,y € H.
That is, D — 8 is strongly monotone with coefficient § — 5p.

A mapping T : H — H is said to be averaged if and only if it can be written as the average of the
identity mapping and a nonexpansive mapping, i.e.,

T:=(1-pB)I+pS

where § € (0,1) and S : H — H is a nonexpansive mapping and [ is the identity mapping on H.
Every averaged mapping is nonexpansive and every firmly nonexpansive mapping is averaged. Thus
since the resolvent of maximal monotone operators are firmly nonexpansive, they are averaged and
therefore nonexpansive. For details, please see [2,5,20,23].

3. Main Results

Theorem 3. Let Hy and Hy be two real Hilbert spaces, A : Hy — Hj be a bounded linear operator and A*
the adjoint of A. Let f1 : Hy — Hj be u-inverse strongly monotone mapping and f, : Hy — Hp be v-inverse
strongly monotone mapping. Let By : Hy — 2H1 and By : Hy — 2M2 be multi-valued maximal monotone
mappings. Let Q) be a solution set of (8) - (9), S; : Hi — Hj (i=1,2,...,N) be «;-strictly pseudocontractive
mappings and F N Q) # @ where F = NN F(S;). Let D be a strongly positive bounded linear operator on Hy

with a coefficient 5 > 0, G a p contraction on Hy, 0 < 6 < 2 and {n,;}N | C (0,1) are such that Zfil Nni =
1UR2(I = Af2) = DAws| >

[|A* (T2 (1 = Af2) = ) Awn| 2

e) for ]fz(l — Af2)Awy, # Awy and vy, = 7y, otherwise (v being any nonnegative real number). Then the

1. Let the step size 7y, be chosen in such a way that for some e > 0, v, € (6,

sequences {wy },{xn} and {y, } generated iteratively for an arbitrary xo € C and a fixed u € C by

wy = (I - [XnD)x;/l + DC;/Z&G(X”),
Y = NI = Af) (wn + 1 AT (T2 = Afa) — 1) Awy), (17)
Xn41 = (1 - ,Bn)yn + Bn Ef\; Wn,isiyn/ Vn >0,

converges strongly to a point p € Q) N which is also a solution of the variational inequality
(D=6G)p,p—q) <0, Vg€ QNF,

where A > 0 is such that where 0 < A < 2u,2v and {a, }> | and {Bn}5_, are real sequences in (0,1)
satisfying the following conditions

(i) limy 00 0y = 0, 2:10:1 Ky = 09,

(ii)) k = max{x; : 1 <i < N}, 0 < liminf B, < limsup B, < 1—«.
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[|(I =D +6G)(x) = (I-D+6G)(y)ll
[|(I = D)x = (I - D)y|| +4]|Gx — Gyl|
(1 =d)llx = yll + dpllx = yl|

<
<
<
< (1=(=dp)llx—yll

Thus Poqr(I — D + 6G) is a contraction and by the Banach contraction mapping principle, we
conclude that there exists p € H such that p = Porp(I — D + 6G)p.
Next we show that {x, } is bounded.

lwn =pll =

ININ A

But

yn — plI?

IN

= |lwn —

427y (wy,

Now by Lemma 1 (16), we have

2wy —

Thus from (19) and (20), we have

lyn —pII* <

= ||wy —

Hence from the condition v, € (e

[[(I —anD)(xn —
(1 — ayd)||xn
(1= and)||xn — pll + an|[0G (xn) — 6G(p)|| + an||6G(p)
[1-(0-

||])1§1(1_Af1)(wn + 1A
[lwn +1nA

A (J2(I=Afy) — DAw,) =

p) + an(0G(xn) —
= pll + an[6G(xy) —

Dp)||
Dpl|

- Dp)l|

Sp)an]||xn = pl| + an[|6G(p) = Dp)]|. (18)

A*(J2(I = Afy) — I) Awy) — pl[?
A*(J2 (1= Afa) — 1) Awy — p| |2
plIZ+ 2IA*(J2 (1 = Afa) — 1) Aw, |2

—p, A(J2(1 = Afy) — I) Awy,). (19)

29n{A(wn — p), I3 (I = Af2) — I) Awy)
= 29, [(J2(1 = M) Awy — Ap, (JP2(1 = Af) — 1) Awy)
11U i” (I=Afa) — 1) Aw,|?]

29ul5 L2 (1= Afa) — 1) Awy |
—II(IBZ(I — Afy) = 1) Aw,|?]

= 1|21 = Afa) — 1) Aw, |

IN

(20)

<l = pIP + 72l AT UR(T = Af2) = D Awa| P =l |32 (1 = Af2) = T) Awwy||?
PIP + ulrall AR (1 = Af2) — 1) Awy|
—[|J2(I = Afa) = I) Aw]?].

(21)
100 =) = DA
A UR (= 2f) - DawlE "
lyn =PI < Jlwn = pl2. @)
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N
xnpr = pIP = (1= Bu)yn + Bu Y_ 1Sy — pI*|?
i=1

N
= (1=Bu)llyn — pII* + Bull X 11iSivin — pII* = Bu(1 = Bu)llyn — va Y| *

i=1

N
< (1= Bu)llyn — P>+ Bulllyn — pI* + &llyn — Y_ 11, Sivnl[*]
i=1
—Bu(1—Bu) ||yn_zrlm zynH
= |lyn— P||2_.Bn(1_5n_’c||yn Z’?nzsynH
< lyn —plI~ (23)

Therefore, from (18), we have

%1 =pll < [lwn = pll
<

(1= (5= dp)an]||xn — pl| + anl|[6G(p) — Dp)|
1

= 1_ 5 — - 5 — =T —D
[1— (6 = dp)an]llxn — pl| + (& 5P)wn(575P)|l5G(P) Pl
1
< _ - _
< max{l s = pll, 5= 5 19G) — DI
1
< - = . < 7D . 24
< max{(x0 = pl, 5= 5 19G() — DI} @
We then conclude that {x,} is bounded.
Again,
l|wn = xull = [I(I —anD)xn + andG(xn) — Xul|
= ay||Dxy —6G(xy)|| = 0,n — oo. (25)
Moreover,

1 = pIP < lyn—pIP = Bu(1 = Bn — )| lyn — an iynl?
< lwn — P||2—,3n(1_,3n—7(||3/n Z’?nz z?/n”

= [|(I = anD)xy + andG(xn) — p|[* — Bu(1 = Bu — )| yn — Z’?nt iy *

IN

|20 — P||2 + 04,21||Dxn - 5G(xn)||2 — 200 {xy — p, Dxy — (5G(xn)>

_,Bn(l ||yn Zﬂnz lynH (26)

We divide into two cases to obtain strong convergence.
Case 1. Assume that {||x, — p||?} is a monotonically decreasing sequence. It then follows that {||x, —
p||?} is convergent and

[lxn = pll = l[Xns1 = pl| = 0,1 — co. (27)
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Therefore, from (26), we have

N
Bu(1 = Bu = )lyn — Y 1iSival > < 12w = pII* = l1xn11 — plI* + a3 || Dxy — 6G (x) ||
i=1
—20,(xy — p, Dxy, — 6G(x)) — 0,n — o0.

That is,

N
[yn = ) 11n,iSiyn|| = 0, — oo (28)
i=1

Also,

yn —pI?

[wn — Pl + Yul 1l [A* U321 = Af2) — 1) Awn | = [|(J32(I = Afa) — I) Awy] ]
[[xn — P||2 + “%HDxn - 5G(xn)||2 — 200 (xn — p, Dxy — 0G(xp))
[l |A* (T2 (I = Af2) = D) Awa|* = ||(J32(I = Afa) — 1) Awy 2] (29)

041 = plI?

(VAN VAN VAN

It then follows from (29) and the condition

€ ||(I§2(I*)\f2)*l)Aw”||2 —€
e ( AR (= Af2) — 1) Awy |2 )

that

xni1 —pIP <l = pl? + &3] [Dxy — 6G(xn)||* — 2000 (xn — p, Dxy — 6G(x))
—e2||A*(J2(I = Afa) — ) Aw, %, (30)

which implies

* (1B,
AT (21 = Af2) = DAwy|[> < = plI* = [|xas1 — pI? + aq|[Dxy — 6G (xn)[|?

—20y(xy — p, Dxy — 6G(x,)) — 0,1 — o0.
Therefore,
nlgr;oHA*(]fzu—Afz)—1)Awn|| =0. (31)
Also from (29), we have

YllJ2(1 = Afy) = DAwa|? < |xn — pl? = ||xns1 — pl* + &3] |Dxy — 6G (xn)]
—20y{(xy — p, Dx;, — 6G(xy))
FV2 A (T2 (1 = Afa) — 1) Awy|[> — 0,1 — co. (32)

SAMSA CONFERENCE, UNIVERSITY OF PRETORIA, 20 - 24 NOVEMBER 2016



67 of 73

Further,
lyn —pI? = 13 (1= Af) (@n + 1A (32 (1= Af2) — ) Awy) — pl[?
(Yn — prwn + A" (J32(I = Af2) — ) Aw, — p)
Sllyn = pIP 4 1n + 1A (221 = Af2) — 1) Aoy — I
Nl — p— (w5 + A (P21 = Afa) = 1) Awy) — p)| 2]
Allyn = pIP + [f0n — pl?
(ol [A T2 (1= Af2) = 1) Awg| P = || JF2(1 = Afz) — I) Awy|?)
~[lyn = p = (W + AU (I = Af2) = 1) Awy — p)| ]
2ty — Pl + llw = pIP = (llyn — al 2+ RIA R = Afa) — 1) A |
~29u(yn — wa, A*(J2(I = Afo) = ) Awn) )]
2llyn = pIP +1feon = pI2 = llyn — wnll?
+29ullyn — walll| AT (B2 (1 = Afy) — 1) Aw, ] 33)

IN

IN

IN

IN

That is,

lyn —pl* < lwn = plI* = |lyn — wal?
F29u| [y — wal [[|A* (JR2(I — Afa) — ) Awy]|. (34)

Thus, it follows from (23) and (34) that

a1 = plP < Hlwn = plI* = [yn — wal

+29u |y — wl ||| A*(J32(1 = Af2) — I) Aw]]. (35)
Hence,
x /1B
yn —wal P < Nlwn = plP = 1xus1 — Pl + 27alyn — wal[|[|A* (32 (I = Af2) — I) Awy ||
< lxn — PH2 "‘“%HDXH - 5G(xn)||2 — 20 (xy — p, Dxy — 0G(x1))
et — pIP + 27l — wall[[A* (P21 = Afa) — I) At || = 0,1 — 0. (36)
Furthermore,
20 = ynl| < |xn — wal| + |[wn — yal| = 0,1 — oo. (37)
N
[1Xn41 = Yall :ﬁnHyn—Z’?n,iSiynH —0,n — oo, (38)
i=1
and hence,
[xXn+1 = xnl| < [|xns1 = yull + 1120 — yu|| — 0, — oco. (39)

Let u, = wy, + ’yA*(]fZ(I — Afa) — I)Aw,, then

it = wal* = Ly | (J32(1 = Afa) = T) Awy > = 0. (40)
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Combining (36) and (40), we have that
[yn — unll < lyn — wnll + llwn — unl| — 0. (41)

Next, we show that
limsup(D — 6G)q,q — x) < 0.

n—o0
We choose a subsequence {x,, } of {x,} such that

lim (D — 6G)q,q — x,,) = limsup(D — 6G)q,q — x).

i—oo n—oo

Since {xy,} is bounded, there exists a subsequence of {x,,} also denoted as {x,,} that converges
weakly to some g € H and consequently we have {y,,} and {w;,} converge weakly to g. From
Lemma 4 , Lemma 8, Lemma 9 and (28), we conclude g € F.

1
We now show that g € I(f1,By). Since fi isa p—LipschitZ monotone mapping and the domain of f; is

H; then by Lemma 6 we conclude that By + f; is maximally monotone. Let (v,z) € G(By + f1), that
isz — f]?) € By (ZJ)
Since y,,;, = ]fl (I — Af1)uy,, we obtain that

(I — /\f1)uni S (I + ABl)yni-

That is,
1
X(uni - )\fluni - yﬂi) € Bl(y"i)‘

Using the maximal monotonicity of (B; + f1), we have

1
(v —Yn,z— fiv— X(u”f — Afitln, — yn;)) > 0.

Therefore,
1
<U _yn,'/z> > <U - yn,-/fﬂH' X(u”i - /\fluﬂi —]/n,-)>
1
= <U - yni’flv _flyni +f1yﬂi _flu”i + X(”Vli _yni)>
1
> 0+ <U —]/ni/fl]/n,v _fluﬂi> + <Z) — Yny, X(uﬂi - yﬂi»' (42)
By (41), we obtain that

1iIIl ”fly”i _fluni” =0.
1—00
Also, since y,, — q, we have

lim (v — yp,z) = (v —p,2).

i—00
Thus, from (42)
(v—g,z) > 0.

Since B; + fi is maximally monotone, we have 0 € (B; + f1)q which implies that

qe I(ferl)-
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Moreover, we have Aw,, converges weakly to Ag, thus by (32) and the fact that ])Ifz(l —Afy) is

nonexpansive, then by Lemma 4, we get that
0 € fLAq+ By(Ag).

Thatis Aq € I(f>,B,). Hence, g € QNTF.
Since p = Poqr(I — D +6G)p and g € QNF, we have

limsup((D —dG)p,p —xn) = LIm((D—6G)p,p— xn,)
n—ro00 =00

= ((D-6G)p,p—9q) <0.

We now show that {x, } converges strongly to p.

xne1 = PI* < lyw — pll?
< wn = pl?
= ||(I = anD)xy + 2,0G(xn) — p||?
< (1= and)?||xn — pl* + a3]|0G (x) — Dpl[?
+2a, (I — anD)(xn — p),6G(xn) — Dp)
< (1= wnd)?|xn — pl* + a3 |[6G(xs) — Dpl[?
20, (xy — p,6G(x,) — Dp) — 242(Dx,, — Dp,6G(x,,) — Dp)
< (1= and)?||xn — plI? + a3 116G (xn) — Dpl[* + 2048 {xn — p, G(x
420 (xn — p,6G(p) — Dp) — 242(Dx, — Dp,6G(x,,) — Dp)
< (1= wnd)?|[xn — pl|* + a3 |[6G (xn) — Dpl[* + 2ap6|[xs — p|[>
420, (xy — p,6G(p) — Dp) — 242(Dx, — Dp,6G(x,,) — Dp)
= (1= 2a,(8 — p8) + a5:6*)||xn — pl|* + a;[[6G (x) — Dp|?
+20 (xn — p,6G(p) — Dp) — 24%(Dx, — Dp,6G(x,,) — Dp).
Therefore,
oner = PIE < (L a0 (6 = 0)) v = I+ a6 — ) s end e — I

+a,||6G(xy) — Dp| \2 +2(x, — p,6G(p) — Dp) — 2a,(Dx, — Dp,6G(xp,) —

Thus by Lemma 5, we have x, — p.

Case 2. Assume that {||x, — p||} is not a monotonically decreasing sequence. Set ', = ||x, —

let T : N — N be a mapping for all n > ng (for some 1 large enough) defined by

T(n) :=max{k e N:k > n, T} <Tp1}.

(43)

n) = G(p))

Dp))]-

p||2 and

Clearly 7 is a non-decreasing sequence such that T(1n) — coasn — coand I'(,;y < I'y ()41, forn > ny.

Then from (26), we have

A

0 < er(n)-&-l - p||2 - HxT(Vl) - sz

IN

_ﬁr(n)(l - :BT(n) - ||yT (n) Z Mr(n),i 1yT(n)||21
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which implies

:BT(H)(17‘BT( —K ||yr 2771' in H2 < ‘X ||Dx 75G(x'r(n))||2
_2“7(11) <xr(n) - P Dxr(n) - 5G(xT(n))> — 0.
By the same argument as in (28)-(43) in case 1, we conclude that

limsup(D — 6G)q,9 — X¢(n)) < 0.

n—oo

Hence, for all n > ny,

0 < (lxemysr = PIP = llxe) — pIP
< (1 - T(}’l)<5 - P‘S))er(n) - P||2
Y - 5 -pl)? 6G — Dp||?
+0‘T(n)( % )[(5 — P(5> (‘XT(VZ) ||xT(n) P|| + X(n) ‘ ’ (xT(n)) pll
+2(X¢(n) = P,0G(p) — Dp) — 20 () (DX () — Dp, G (X)) — Dp))] = || %) — P
- 1 -
= (0 — ‘S)[m(“r(n)‘szl %e(n) = PP + e [16G (X7(n)) — Dpl
+2<xr(n) - P,5G(P) - Dp> - 2“T(H)<Dxr(n) - DPI(SG(XT(H)) - DP>) - ||xT(n) - pHZ]'
That is,
1 .
er(n) - P‘ ‘2 < m(“r(n)észT(n) - sz + “T(n)”‘sc(xr(n)) - DP||2
+2(x¢(n) — P,0G(p) — Dp)
—Zar(n)<DxT(n) — Dp, cSG(xT(n)) — Dp>) — 0,n — oo. (44)
Therefore,
||xT(l’l) - sz < X1(n) HPHZ - 20‘1’(71)(1 - “T(n))(xr(n) - P P> —0
Thus,
nlglc}o er(n) - P”Z =0,
and hence,

Jim Loy = Hm Ten)i

Furthermore, for n > ny, it is observed that I'r(,,) < T'r(,)4q if n # T(n)(that is T(n) < n) because
[; >Tjq for t(n) +1 < j < n. Consequently for all n > ny,

0 <Ty <max{Trpy, Lgny + 1} =Ty + 1

So limy, e I'y = 0, thatis {x, },{yx } and {w, } converge strongly to p € Q) NF which is also a solution
of the variational inequality

(D—=6G)p,p—q) <0, Vg QNF.

Corollary 1. Let Hy and H; be two real Hilbert spaces, A : Hi — Hj be a bounded linear operator and A*
the adjoint of A. Let By : Hy — 2H1 and B, : Hy — 2H2 be multi-valued maximal monotone mappings. Let
S; : Hy — Hj (i=1,2,...,N) be «;-strictly pseudocontractive mappings and F N Qp # @ where F = ﬂfilP(Si).
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Let D be a strongly positive bounded linear operator on Hy with a coefficient 5 > 0, G a p contraction on Hy,
5 . .
0<d< ’ and {n,;}N | C (0,1) are such that YN 7; = 1. Let the step size «y, be chosen in such a way

(]2 — 1) Awy| 2

A (T — 1) Ay |
being any nonnegative real number). Then the sequences {wy}, {x,} and {y,} generated iteratively for an
arbitrary xo € C and a fixed u € C by

that for some € > 0, v, € (e e) for ]szwn + Aw, and vy, = vy, otherwise (7

wy = (I —ayD)xp + an0G(xy),
Yn = I3 (wn + A" (32 — 1) Awy), (45)
Xnt1 = (l - /3”)]/” + Bn Z{il Un,isi]/nr Vn >0,

converges strongly to a point p € QY N which is also a solution of the variational inequality
(D=6G)p,p—q) <0, Vg€ QpNF,

where A > 0 is a positive real number and {a, }>_y and {B,}5_, are real sequences in (0,1) satisfying the
following conditions

(i) limy o 0y = 0, 220:1 Kp = 00,

(i) k = max{x; : 1 <i < N}, 0 < liminf B, <limsuppf, <1—«.

Corollary 2. Let Hy and H; be two real Hilbert spaces, A : Hi — Hp be a bounded linear operator and
A* the adjoint of A. Let f1 : Hi — Hj be p-inverse strongly monotone mapping and f, : Hy — Hj be
v-inverse strongly monotone mapping. Let By : Hy — 2H1 and By : Hy — 2H2 be multi-valued maximal
monotone mappings. Let () be a solution set of (8) - (9), S; : Hi — H; (i=1,2,...,N) be nonexpansive mappings
and FNQ # @ where F = NN F(S;). Let D be a strongly positive bounded linear operator on Hy with a

coefficient 6 > 0, G a p contraction on Hy, 0 < 6 < :i and {n,;}N | C (0,1) are such that YN 1 n,,; = 1. Let

ORI = Af2) = DAwg| > 6)
AR = Af2) = D) Awg|?

for | fz(l — Af))Aw, # Awy and v, = vy, otherwise (7y being any nonnegative real number). Then the
sequences {wy },{x,} and {y, } generated iteratively for an arbitrary xo € C and a fixed u € C by

the step size 7y, be chosen in such a way that for some € > 0, v, € (e

wy = (I —ayD)xy + a,0G(xy),
Yn = oI = Af1) (Wi + 1 A1 = Afa) — 1) Awy), (46)
Xn41 = (1 - ,Bn)yn + Bn 21111 Wn,isi]/n/ Yn >0,

converges strongly to a point p € Q) N which is also a solution of the variational inequality
(D—=6G)p,p—q) <0, Vg€ QNF,

where A > 0 is such that where 0 < A < 2u,2v and {a, }> | and {Bn}5_, are real sequences in (0,1)
satisfying the following conditions

(i) limy 00 0y = 0, Ezozl Xy = 00,

(i) 0 < liminf B, < limsup B, < 1.
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