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Abstract: Let E be a p-uniformly convex real Banach space with uniformly Gâteaux differentiable
norm such that 1

p + 1
q = 1, p ≥ 2 and E∗ its dual space. Let A : E→ E∗ be a bounded and t-strongly

monotone mapping such that A−10 6= ∅. We introduce an explicit iterative algorithm that converges
strongly to the unique point x∗ ∈ A−10 in arbitrary real Banach spaces.
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1. Introduction

Let E be a real Banach space and let E∗ be the dual space of E. We study the method of
approximating the zeros of a nonlinear equation of the form

0 ∈ Au, (1)

where u ∈ E and A : E → 2E∗ is a monotone operator. This is a general form for problems of
minimization of a function, variational inequalities and so on. Let E be a real normed space of
dimension ≥ 2 and let S := {x ∈ E : ‖x‖ = 1}. E is said to have a Gâteaux differentiable norm (or E
is called smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm if for each y ∈ S
the limit is attained uniformly for x ∈ S. Further, E is said to be uniformly smooth if the limit exists
uniformly for (x, y) ∈ S× S.
The modulus of convexity of E, δE : (0, 2]→ [0, 1] is defined by

δE(ε) = inf
{

1− ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. Let p > 1, then E is said to be
p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for all ε ∈ (0, 2]. Observe
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that every p-uniformly convex space is uniformly convex. A normed linear space E is said to be
strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y⇒ ‖x + y‖
2

< 1.

Every uniformly convex space is strictly convex.

Lemma 1. (See e.g., Chidume [16], p. 135): Let E = `p. Then for p, q > 1 such that 1
p + 1

q = 1 and for each
pair x, y ∈ E, the following inequalities hold:

‖1
2
(x + y)‖

q
+ ‖1

2
(x− y)‖

q
≤
[
2−1 (‖x‖p + ‖y‖p)]q−1

, for 1 < p ≤ 2, (2)

and

‖x + y‖q + ‖x− y‖q ≤ 2−1 (‖x‖p + ‖y‖p) , for 2 ≤ p < ∞. (3)

We use Lemma 1 to give example of uniformly convex spaces.

Example 1. `p (1 < p < ∞) spaces are uniformly convex.

Proof. Given ε ∈ (0, 2], let x, y ∈ `p be such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε. Two cases arise.
Case 1: 1 < p ≤ 2. In this case, inequality (2) yields:

‖1
2
(x + y)‖

q
+ ‖1

2
(x− y)‖

q
≤

[
2−1 (‖x‖p + ‖y‖p)]q−1

≤ 2−(q−1)2q−1 = 1.

Thus, ‖ 1
2 (x + y)‖q ≤ 1− ‖ 1

2 (x− y)‖q ≤ 1−
(

ε
2
)q such that ‖ x+y

2 ‖ ≤
[
1−

(
ε
2
)q
]1/q

< 1.

Therefore, by choosing δ = 1−
[
1−

(
ε
2
)q
]1/q

> 0, we obtain ‖ x+y
2 ‖ ≤ 1− δ. Thus

δE(ε) = inf
{

1− ‖x + y‖
2

}
= δ > 0,

which shows that `p (1 < p ≤ 2) are uniformly convex.
Case 2: 2 < p < ∞. The result follows as in case 1 by using inequality (3). Indeed,

‖x + y‖q + ‖x− y‖q ≤ 2−1(2) = 1,

‖ x + y
2
‖

q
≤ 1

2q (1− εq) =
1
2q −

( ε

2

)q
,

‖ x + y
2
‖ ≤

[
1
2q −

( ε

2

)q
]1/q

< 1.

Therefore, by choosing δ = 1−
[

1
2q −

(
ε
2
)q
]1/q

> 0, we obtain ‖ x+y
2 ‖ ≤ 1− δ. Thus

δE(ε) = inf
{

1− ‖x + y‖
2

}
= δ > 0,

which shows that `p (2 < p < ∞) are uniformly convex.

Let E be a real normed space and let Jp, (p > 1) denote the generalized duality mapping from E
into 2E∗ given by

Jp(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1
}

,
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where E∗ is the dual space of E and 〈., .〉 denotes the generalized duality pairing. It is well known
(see, for example, Xu [31]) that Jp(x) = ‖x‖p−2 J2(x) if x 6= 0. For p = 2, the mapping J2 from E to 2E∗

is called normalized duality mapping.

Remark 1. Let E be a uniformly convex Banach space and E∗ its dual space. The following properties of the
normalized duality map have been established (see e.g [20], [30], [31], [32]):

(i) if E is smooth, then Jp is single-valued;
(ii) if E is reflexive, then Jp is onto;

(iii) if E is smooth, strictly convex, and reflexive, then J∗p : E∗ → 2E is the generalized duality map from E∗

to E;
(iv) if E has uniform Gâteaux differentiable norm, then Jp is norm-to-weak∗ uniformly continuous on

bounded sets.

Let E be a p-uniformly convex real Banach space and A : E → E∗ be a single-valued map. The
map A is said to be:

(i) monotone if for each x, y ∈ E, we have

〈x− y, Ax− Ay〉 ≥ 0;

(ii) t−strongly monotone if there exist a constant t > 0 such that for each x, y ∈ E, we have

〈x− y, Ax− Ay〉 ≥ t‖x− y‖p.

Monotone operators have turned out to be ubiquitous in modern optimization and analysis (see, e.g.,
[4], [6], [26], [27]). Interest in monotone operators stems mainly from their usefulness in numerous
applications. Consider, for example (see e.g Chidume et al. [8]), the following: Let f : E → R be a
proper and convex function. The subdifferential of f at x ∈ E is defined by

∂ f (x) = {x∗ ∈ E∗ : f (y)− f (x) ≥ 〈y− x, x∗〉 ∀y ∈ E} .

Monotonicity of ∂ f : E → 2E∗ on E can be easily verified, and that 0 ∈ ∂ f (x) if and only if x is a
minimizer of f . Setting ∂ f = A, it follows that solving the inclusion 0 ∈ Au in this case, is the same
as solving for a minimizer of f . Several existence theorems have been established for the equation
Au = 0 when A is of the monotone-type (see e.g., Deimling [21]; Pascali and Sburlan [24]).
A single-valued map A : E→ E is called accretive if for each x, y ∈ E, there exists j2(x− y) ∈ J2(x− y)
such that

〈j2(x− y), Ax− Ay〉 ≥ 0.

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces,
monotonicity and accretivity coincide.

There have been extensive research efforts on inequalities in Banach spaces and their applications
to iterative methods for solutions of nonlinear equations of the form Au = 0. Assuming existence,
for approximating a solution of Au = 0, where A is of accretive-type, Browder [5] defined an
operator T : E → E by T := I − A, where I is the identity map on E. He called such an operator
pseudo-contractive. It is trivial to observe that zeros of A correspond to fixed points of T. For
Lipschitz strongly pseudo-contractive maps, Chidume [18] proved the following theorem.

Theorem 1. (Chidume [18]:) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be nonempty closed convex and bounded.
Let T : K → K be a strongly pseudocontractive and Lipschitz map. For arbitrary x1 ∈ K, let a sequence {xn}
be defined iteratively by

xn+1 = (1− λn)xn + λnTxn, n ∈ N,
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where λn ∈ (0, 1) satisfies the following conditions:

(i)
∞

∑
n=1

λn = ∞,

(ii)
∞

∑
n=1

λ2
n < ∞.

Then, {xn} converges strongly to the unique fixed point of T.

The above theorem has been generalized and extended in various directions, leading to
flourishing areas of research, for the past thirty years or so, for numerous authors (see e.g., Censor
and Reich [7]; Chidume [9], [18], [10]; Chidume and Bashir [12]; Chidume and Chidume [13], [14];
Chidume and Osilike [15] and a host of other authors).

Recent monographs emanating from these researches include those by Berinde [3], Chidume
[11], Goebel and Reich [17], and William and Shahzad [29].

However, it occurs that most of the existing results on the approximation of solutions of
monotone-type maps have been proved in Hilbert spaces. Unfortunately, as has been rightly
observed, many and probably most mathematical objects and models do not naturally live in Hilbert
spaces. The remarkable success in approximating the zeros of accretive-type mappings is yet to
be carried over to equations involving nonlinear monotone mappings in general Banach spaces.
Perhaps, part of the difficulty in extending the existing results on the approximation of solutions
of accretive-type mappings to general Banach spaces is that, since the operator A maps E to E∗, the
recursion formulas used for accretive-type mappings may no longer make sense under these settings.
Take for instance, if xn is in E, Axn is in E∗ and any convex combination of xn and Axn may not make
sense. Moreover, most of the inequalities used in proving convergence theorems when the operators
are of accretive-type involve the normalized duality mappings which also appear in the definition of
accretive operators.

Recently, Diop et al [22] introduced an iterative scheme and proved the following strong
convergence theorem for approximation of the solution of equation Au = 0 in a 2-uniformly convex
real Banach space. In particular, they proved the following theorem.

Theorem 2. Diop et al [22]: Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux
differentiable norm and E∗ its dual space. Let A : E → E∗ be a bounded and k-strongly monotone mapping
such that A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively by:

xn+1 = J−1
2 (J2xn − αn Axn), n ∈ N, (4)

where J2 is the normalized duality mapping from E into E∗ and {an} ⊂ (0, 1) is a real sequence satisfying the
following conditions:

(i)
∞

∑
n=1

αn = ∞;

(ii)
∞

∑
n=1

α2
n < ∞.

Then, there exists γ0 > 0 such that if αn < γ0, the sequence {xn} converges strongly to the unique solution of
the equation Ax = 0.

It is our purpose in this paper to introduce an explicit iterative algorithm that converges strongly
to the solution of equation (1) in real Banach spaces. Furthermore, we obtained as corollary, the
theorems of Diop et al. [22] for p = 2 and Chidume et al. [8] for E := Lp, 1 < p < ∞ and λn =

λ ∀ n ∈ N, λ ∈ (0, 1).
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2. Preliminaries

In the sequel, we shall need the following definitions and results.

Definition 1. Let E be a smooth real Banach space with the dual E∗.

(i) The function φ1 : E× E→ R is defined by

φ1(x, y) = ‖x‖2 − 2 〈x, J2y〉+ ‖y‖2, for all x, y ∈ E, (5)

where J2 is the normalized duality map from E to E∗ (see e.g, Alber [1]).
(ii) The function φ : E× E→ R is defined by

φ(x, y) = p
(

q−1‖x‖q −
〈

x, Jpy
〉
+ p−1‖y‖p

)
, for all x, y ∈ E, (6)

where Jp is the generalized duality map from E to E∗ and such that 1
p + 1

q = 1, q ≥ p ≥ 2.
(iii) The map V : E× E∗ → R is defined by

V(x, x∗) = p
(

q−1‖x‖q − 〈x, x∗〉+ p−1‖x∗‖p
)
∀ x ∈ E, x∗ ∈ E∗. (7)

Remark 2. These remarks follow from Definition 1:

(i) If E = H, a real Hilbert space, then equation (5) reduces to φ1(x, y) = ‖x− y‖2 for x, y ∈ H. It is
obvious from the definition of the function φ1 that

(‖x‖ − ‖y‖)2 ≤ φ1(x, y) ≤ (‖x‖+ ‖y‖)2 for all x, y ∈ E. (8)

(ii) For p = 2, φ(x, y) = φ1(x, y). Also, it is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)p ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)p for all x, y ∈ E. (9)

(iii) It is obvious that
V(x, x∗) = φ(x, J−1

p x∗) ∀ x ∈ E, x∗ ∈ E∗. (10)

Theorem 3. Xu [31]: Let p > 1 be a fixed real number and E be a real Banach space. The following are
equivalent:

(i) E is p-uniformly convex;
(ii) there is a constant c1 > 0 such that for all x, y ∈ E and jp(x) ∈ Jp(x),

‖x + y‖p ≥ ‖x‖p + p
〈
y, Jp(x)

〉
+ c1‖y‖p;

(iii) there is a constant c2 > 0 such that〈
x− y, jp(x)− jp(y)

〉
≥ c2‖x− y‖p, ∀ x, y ∈ X and jp(x) ∈ Jp(x), jp(y) ∈ Jp(y).

Lemma 2. Kamimura and Takahashi [23]: Let E be a smooth uniformly convex real Banach space and let {xn}
and {yn} be two sequences from E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then
‖xn − yn‖ → 0 as n→ ∞.

Lemma 3. Tan and Xu [28]: Let {αn} be a sequence of non-negative real numbers satisfying the following
relation:

αn+1 ≤ αn + σn, n ≥ 0
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such that
∞

∑
n=0

σn < ∞. Then lim
n→∞

αn exists. If in addition, the sequence {αn} has a subsequence that converges

to 0. Then {αn} converges to 0.

Lemma 4. Zǎlinescu [32]. Let ψ : R+ → R+ be increasing with lim
t→∞

ψ(t) = ∞. Then J−1
ψ is single-valued

and uniformly continuous on bounded sets if and only if E is a uniformly convex Banach space.

3. Main Result

We first give and prove the following lammas which are useful in establishing our main results.

Lemma 5. Let E be a reflexive strictly convex and smooth real Banach space with E∗ as its dual. Then,

V(x, x∗) + p
〈

J−1
p x∗ − x, y∗

〉
≤ V(x, x∗ + y∗) (11)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof.
1
p

V(x, x∗ + y∗) =
(

q−1‖x‖q − 〈x, x∗ + y∗〉+ p−1‖x∗ + y∗‖p
)

(12)

1
p

V(x, x∗) =
(

q−1‖x‖q − 〈x, x∗〉+ p−1‖x∗‖p
)

(13)

1
p

V(x, x∗ + y∗)− 1
p

V(x, x∗) = − 〈x, y∗〉+ p−1‖x∗ + y∗‖p − p−1‖x∗‖p

= 〈−x, y∗〉+ p−1‖x∗ + y∗‖p − p−1‖x∗‖p

=
〈

J−1
p x∗ − x, y∗

〉
−
〈

J−1
p x∗, y∗

〉
+p−1‖x∗ + y∗‖p − p−1‖x∗‖p

≥
〈

J−1
p x∗ − x, y∗

〉
−
〈

J−1
p x∗, y∗

〉
+p−1

(
‖x∗‖p + p

〈
y∗, J−1

p x∗
〉
+ dp‖y∗‖q

)
− p−1‖x∗‖p

=
〈

J−1
p x∗ − x, y∗

〉
+ p−1dp‖x∗‖p

≥
〈

J−1
p x∗ − x, y∗

〉
Thus, V(x, x∗) + p

〈
J−1
p x∗ − x, y∗

〉
≤ V(x, x∗ + y∗).

Lemma 6. Let E be a uniformly convex Banach space. The duality mapping J−1
p : E∗ → E is Lipschitz on

every bounded set in E∗; that is, for all R > 0, there exists a positive constant L such that

‖J−1
p (x∗)− J−1

p (y∗)‖ ≤ L‖x∗ − y∗‖,

for all x∗, y∗ ∈ E∗ with ‖x∗‖ ≤ R and ‖y∗‖ ≤ R.

Proof. From Lemma 4, J−1
p is uniformly continuous on bounded subsets of E∗ implies that for all

R > 0, there exists a nondecreasing function ψ0 with ψ0+(0) = 0 such that

‖J−1
p (x∗)− J−1

p (y∗)‖ ≤ ψ0(‖x∗ − y∗‖),
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for all x∗, y∗ ∈ E∗ with ‖x∗‖ ≤ R and ‖y∗‖ ≤ R. By taking ψ0(‖x∗ − y∗‖) := L‖x∗ − y∗‖, the result
follows.

Lemma 7. For p > 1, let E be a p-uniformly convex real Banach space. For d > 0, let Bd(0) :=
{x ∈ E : ‖x‖ ≤ d}. Then for arbitrary x, y ∈ Bd(0),

‖x− y‖p ≥ φ(x, y) + d‖x‖p − p
q
‖x‖q, q ≥ p ≥ 2. (14)

Proof. Since E is a p-uniformly convex space, then by condition (ii) of Theorem 3, for any x, y ∈
Bd(0), we have that

‖x + y‖p ≥ ‖x‖p + p
〈
y, Jp(x)

〉
+ d‖y‖p.

Replacing y by −y gives
‖x− y‖p ≥ ‖x‖p − p

〈
y, Jp(x)

〉
+ d‖y‖p.

Interchanging x and y and simplifying by p, we get

p−1‖x− y‖p ≥ p−1‖y‖p −
〈

x, Jp(y)
〉
+ dp−1‖x‖p

= q−1‖x‖q −
〈

x, Jp(y)
〉
+ p−1‖y‖p − q−1‖x‖q + dp−1‖x‖p

= p−1φ(x, y)− q−1‖x‖q + dp−1‖x‖p,

so that
φ(x, y) ≤ p

(
p−1‖x− y‖p + q−1‖x‖q − dp−1‖x‖p

)
,

which is equivalent to

‖x− y‖p ≥ φ(x, y) + d‖x‖p − p
q
‖x‖q,

establishing the lemma.

Theorem 4. Let E be a p-uniformly convex real Banach space with uniformly Gâteaux differentiable norm
such that 1

p +
1
q = 1, q ≥ p ≥ 2 and E∗ its dual space. Let A : E→ E∗ be a bounded and t-strongly monotone

mapping such that A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively by:

xn+1 = J−1
p (Jpxn − λn Axn), n ∈ N, (15)

where J is the generalized duality mapping from E into E∗ and {λn} ⊂ (0, γ0), γ0 < 1 is a real sequence
satisfying the following conditions:

(i)
∞

∑
n=1

λn = ∞;

(ii)
∞

∑
n=1

λ2
n < ∞.

Then, the sequence {xn} converges strongly to the unique point x∗ ∈ A−10.

Proof. Let x∗ ∈ E be a solution of the equation Ax = 0. There exists r > 0 sufficiently large such that:

r ≥ max
{

4
(

p
q
‖x∗‖q − d‖x∗‖p

)
, φ(x1, x∗)

}
and γ0 := min

{
1,

ptr
4M0

}
. (16)

We divide the proof into two steps.
Step 1: We prove that {xn} is bounded. It suffices to show that φ(x∗, xn) ≤ r, ∀ n ∈ N. The proof is
by induction. By construction, φ(x∗, x1) ≤ r. Assume that φ(x∗, xn) ≤ r for some n ∈ N. We show
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that φ(x∗, xn+1) ≤ r, ∀ n ∈ N.

From inequality(9), we have ‖xn‖ ≤ r
1
p + ‖x∗‖. Since A is bounded, define

M0 := pL sup
{
‖Axn‖2 : ‖xn‖ ≤ r

1
p + ‖x∗‖

}
, (17)

where L is a Lipschitz constant of J−1
p and p ≥ 2. We compute as follow by using the definition of

xn+1:

φ(x∗, xn+1) = φ
(

x∗, J−1
p (Jpxn − λn Axn)

)
= V

(
x∗, Jpxn − λn Axn

)
≤ V(x∗, Jpxn)− pλn

〈
J−1
p (Jpxn − λn Axn)− x∗, Axn − Ax∗

〉
(by Lemma (5) with y∗=λn Axn)

= φ(x∗, xn)− pλn 〈xn − x∗, Axn − Ax∗〉

−pλn

〈
J−1
p (Jpxn − λn Axn)− J−1

p (Jpxn), Axn

〉
.

Using the strong monotonicity of A, Schwartz inequality and Lipschitz property of J−1
p , we obtain

φ(x∗, xn+1) ≤ φ(x∗, xn)− ptλn‖xn − x∗‖p

+qλn‖J−1
p (Jpxn − λn Axn)− J−1

p (Jpxn)‖‖Axn‖

≤ φ(x∗, xn)− ptλn‖xn − x∗‖p + pλ2
nL‖‖Axn‖2

≤ φ(x∗, xn)− ptλn

(
φ(x∗, xn) + d‖x∗‖p − p

q
‖x∗‖q

)
+ λ2

n M0

(using Lemma 7)

≤ φ(x∗, xn)− ptλnφ(x∗, xn) + ptλn

(
p
q
‖x∗‖q − d‖x∗‖p

)
+ λnγ0M0

≤ r− ptλnr + ptλn
r
4
+ ptλn

r
4

=

(
1− ptλn

2

)
r

< r.

Hence, φ(x∗, xn+1) ≤ r. By induction, φ(x∗, xn) ≤ r ∀ n ∈ N. Thus, from inequality (9), {xn} is
bounded.
Step 2: We now prove that {xn} converges strongly to the unique point x∗ ∈ A−10. Following the
same arguments as in step 1, the boundedness of {xn} and that of A, there exists a positive constant
M0 such that

φ(x∗, xn+1) ≤ φ(x∗, xn)− ptλn‖xn − x∗‖p + λ2
n M0. (18)

Consequently, φ(x∗, xn+1) ≤ φ(x∗, xn) + λ2
n M0.

By the hypothesis that
∞

∑
n=0

λ2
n < ∞ and Lemma 3, we have that lim

n→∞
φ(x∗, xn) exists. From inequality

(18), we have
∞

∑
n=0

λn‖xn − x∗‖ < ∞. Using the fact
∞

∑
n=0

λn = ∞, it follows that lim inf ‖xn − x∗‖p = 0.

Consequently, there exists a subsequence
{

xnk

}
of {xn} such that xnk → x∗ as k → ∞. Since {xn}

is bounded and Jp is norm-to-weak∗ uniformly continuous on bounded subset of E, it follows that
{φ(x∗, xn)} has a subsequence that converges to 0. Therefore, by Lemma 2, {φ(x∗, xn)} converges
strongly to 0. Also, by Lemma 2, ‖xn − x∗‖ → 0 as n→ ∞.
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Corollary 1. Diop et al. [22]: Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux
differentiable norm and E∗ its dual space. Let A : E → E∗ be a bounded and k-strongly monotone mapping
such that A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively by:

xn+1 = J−1
2 (J2xn − αn Axn), n ∈ N, (19)

where J2 is the normalized duality mapping from E into E∗ and {an} ⊂ (0, 1) is a real sequence satisfying the
following conditions:

(i)
∞

∑
n=1

αn = ∞;

(ii)
∞

∑
n=1

α2
n < ∞.

Then, there exists γ0 > 0 such that if αn < γ0, the sequence {xn} converges strongly to the unique solution of
the equation Ax = 0.

Proof. By taking p = 2, the proof follows from Theorem 4.

Corollary 2. Chidume et al [8]: Let E = Lp, 1 < p < ∞. Let A : E → E∗ be a strongly monotone and
Lipschitz map. For x1 ∈ E arbitrary, let the sequence {xn} be defined by:

xn+1 = J−1
2 (J2xn − λAxn), n ∈ N, (20)

where λ ∈ (0, δ). Then, the sequence {xn} converges strongly to x∗ ∈ A−1(0) and x∗ is unique.

Proof. Take E = Lp, 1 < p < ∞ and λn = λ, the proof follows from Theorem 4.
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