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1. Introduction

The amenability question for algebras K(X) (of compact operators on a given Banach space X)
was first considered in 1972 by Johnson [4]. Since then, many researchers have studied this notion
in the closed subalgebras of B(X), the algebra of bounded linear operators on X. However, little is
known about the amenability of general Banach operator ideals in relation to the geometric properties
of X.

It is important that such investigations are made. For instance, amenability is characterized in
C∗-algebras as nuclearity [8, Theorem 5.6.73]. Do we have such parallels in general Banach operator
ideals? Solutions to similar questions may serve as transport theorems between the geometric theory
of a given Banach space X and the Banach algebraic theory of U (X) for some operator ideal U . This
is one of the motivations for this article.

This paper is organized as follows: In section 1 we give a short motivation, and recall basic
definitions from the theory of tensor products of Banach spaces, operator ideals, operator theory,
and linear functional analysis. We shall use these definitions throughout this article. In section 2 we
recollect few preliminary results from literature and fix some notations. We define the property (Ap)

in Section 3 and present the main results of the paper. We conclude with an open question in Section
4. The solution to this question serves as a concrete proof of the nonequivalence of (Ap) and (A).

Let U be a Banach algebra, and let X be a Banach U -bimodule. A bounded linear map
D : U −→ X which satisfies the equality:

D(ab) = D(a) · b + a · D(b) (a, b ∈ U ),
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is called a bounded derivation. All maps of the form a 7→ a · x − x · a (a ∈ U ), for a fixed x ∈ X,
are bounded derivations. Such derivations are called inner. U is said to be amenable if every
derivation from U into its dual Banach bimodules is an inner derivation. Equivalent characterizations
of amenability are given in Theorem 2 below.

Let X be a banach space, and identify finite rank operators F (X) and X′ ⊗ X in the usual way,
where we associate to each element v = ∑i λi ⊗ xi ∈ X′ ⊗ X the operator v̄ ∈ F (X) defined by
v̄(x) = ∑i λi(x)xi (x ∈ X). We shall particularly talk about the κd

p-norm of an element of X′ ⊗ X, and
the projective norm of an operator in F (X), denoted by ‖ · ‖∧. The completion of X′ ⊗ X = F (X) in
the projective norm is the tensor algebra of X and it is denoted by X′⊗̂X. Moreover, the tensor algebra
is a Banach algebra ([3, II.2.19]).

An operator algebra (operator ideal) on X is a subalgebra (an ideal) of B(X) containing F (X). An
operator algebra (operator ideal) U on X is a Banach operator algebra (Banach operator ideal) if it is a
Banach algebra with respect to some norm. A closed operator algebra (closed operator ideal) is an operator
algebra (operator ideal) which is closed in (B(X), ‖ · ‖).

A Banach space X has the approximation property (AP) [compact approximation property
(CAP)] if, for each compact set K ⊂ X and each ε > 0, there exists T ∈ F (X) [T ∈ K(X)] with
‖Tx− x‖ < ε (x ∈ K). Suppose further that there is a constant m > 0 (independent of K and ε) such
that T can be chosen with ‖T‖ ≤ m. Then X has the bounded approximation property (BAP) [bounded
compact approximation property (BCAP)].

Let p ≥ 1, and K ⊂ X be a subset of a Banach space X. K is said to be relatively p-compact if there
is a strongly p-summable sequence (xn) in X such that for every k ∈ K there exists (λn) ∈ `p′ such
that k = ∑∞

n=1 λnxn. We say that a linear operator T : X −→ Y is p-compact if T maps the closed unit
ball of X into a relatively p-compact subset in Y. Let Kp(X, Y) be the set of all p-compact operators
from X to Y. Then Kp(X, Y) is a Banach space with a suitable factorization norm κp and (Kp, κp)

is a Banach operator ideal [6, Theorem 4.2]. It follows from [9, Chapter 9] that the dual (Kd
p, κd

p) of
(Kp, κp) is also a Banach operator ideal.

Denote by trX the usual trace on X′ ⊗ X, namely, the unique bounded linear functional on X′ ⊗ X
which is defined on elementary tensors by

trX(λ⊗ x) = λ(x), (λ ∈ X′, x ∈ X)

(also see [2, §2.5]).
Let X and Y be normed spaces, and let T ∈ B(X, Y). Then there exists a unique T′ ∈ B(Y′, X′)

such that
〈Tx, λ〉 = 〈x, T′λ〉 (x ∈ X, λ ∈ Y′).

We call T′ the adjoint of T. Furthermore, ‖T′‖ = ‖T‖, and the map

T′ : (Y′, σ(Y′, Y)) −→ (X′, σ(X′, X))

is continuous.
Given a closed subspace U of B(X, Y), define

U a = {T′ ∈ B(Y′, X′) : T ∈ U}. (1.1)

Then the map T −→ T′, U −→ U a is an isometric linear bijection. Now let U be a closed operator
algebra in B(X). Then U a is a closed operator algebra in B(X′). It is clear that U has a bounded right
approximate identity if and only if U a has a bounded left approximate identity. We would like to
remark that if X has a basis and (Pn) is a sequence of natural projections, so that (Pn) ⊂ F (X), the
(Pn) is a sequential bounded left approximate identity in K(X) with the bound of the approximate
identity being the basis constant.
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2. Preliminary results

We put on record the following theorems and propositions whose proofs can be consulted in [8]
and [11].

Proposition 1. [11, Proposition 3.2] and [8, Proposition 1.9.20]. Let G be any irreducible n × n matrix
group, and put

d =
1
|G| ∑

x∈G
x⊗ x−1.

Then d is the unique element of Mn ⊗Mn which is a diagonal for both Mn and Mop
n , and

d =
1
n

n

∑
i,j=1

Eij ⊗ Eji.

Theorem 1. [8, Theorem 2.9.37]. Let X be a non-zero Banach space.

1. The algebra A(X) [K(X)] has a bounded left approximate identity if and only if X has BAP [BCAP].
2. Suppose that X has BAP [BCAP]. The null sequences in A(X) [K(X)] factor.
3. The algebra A(X) has a bounded right approximate identity if and only if X′ has BAP.
4. Suppose that K(X) has a bounded right approximate identity. Then X′ has BCAP.
5. For each closed operator ideal U in B with U ⊂ K(X), U has a bounded approximate identity if and only

if U has a bounded right approximate identity.

Theorem 2. (Helemskii, Johnson; [8, Theorem 2.9.65]). Let A be a Banach algebra. Then the following
conditions on A are equivalent:

1. A is amenable;
2. A has an approximate diagonal;
3. A has a virtual diagonal;
4. A has a bounded approximate identity, andH1(A, I

′′
π) = {0};

5. A has a bounded approximate identity and A is biflat;
6. A has a bounded approximate identity and I

′′
π has a bounded right approximate identity.

Write X ' Y (respectively, X ∼= Y), if X and Y are isomorphic (respectively, isometric) normed
spaces. Let d(X, Y) be the Banach-mazur distance between X and Y, that is, the infimum of the set
{‖T‖‖T−1‖}, where T is an isomorphism between X and Y. We will denote by X the completion
of a normed space X. Given the vectors x1, x2, ..., xr of some linear space X, we will denote by
sp{x1, x2, ..., xr} their linear span. If U is a normed linear algebra and X is a U -bimodule, we will
denote by Z(X) the center of X.

Let U be a dense subalgebra of (X′ ⊗ X, ‖ · ‖∧)(hence of X′⊗̂X). Define U1 := (U , ‖ · ‖∧) and
U2 := (U , κd

p), where 1 ≤ p ≤ ∞. Then Û1
∼= X′⊗̂X and Û2 ∼= Πmin

p (X) by [7, Remark 2.7]. Since the
finite rank operators are (absolutely) p-summing, it follows from [7, Theorem 2.6] that for every finite
rank operator S = ∑i≤n x∗i ⊗ yi, we have

κd
p(S) ≤ ∑

i≤n
κd

p(x∗i ⊗ yi) = ∑
i≤n

πp(x∗i ⊗ yi)

≤ ∑
i≤n
‖x∗i ‖‖yi‖,

and on taking the infimum on both sides we obtain

κd
p(S) ≤ ‖S‖∧. (2.1)
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On the other hand, ‖T‖ ≤ κp(T) for every p-compact operator T by [6, p. 22]. Since S′ is also a
finite rank operator, it is p-compact. Hence

‖S‖ = ‖S′‖
≤ κp(S′)

= κd
p(S)

(2.2)

by the definition of a dual ideal. In fact, Eqn(1.3) is true for any dual p-compact operator T as well;
that is,

‖T‖ ≤ κd
p(T) (2.3)

for any dual p-compact operator T. Together, (2.1) and (2.2) yield

‖S‖ ≤ κd
p(S) ≤ ‖S‖∧. (2.4)

Lemma 1. ([10, Lemma 2.4]). Let Y and Z be Banach spaces. If T : Y −→ Z∗ is a weakly compact operator
and R := T∗|Z, then R∗∗ = T∗.

Theorem 3. ([7, Theorem 4.5]). Let 1 ≤ p ≤ ∞. A Banach space X has the approximation property of type
p (APp, for short) if and only if

F (Y, X)
κd

p = Kd
p(Y, X),

for every Banach space Y.

3. Algebra of p-compact operators and amenability

In this section, we present some results for Banach spaces with property (Ap). We begin by
recalling important definitions from which our definition of the aforesaid property emerges.

Let X be a linear space. A biorthogonal system of size n for X is a pair ((x1, . . . , xn), (λ1, . . . , λn))

in X(n) × X′(n) such that 〈xi, λj〉 = δi,j (i, j ∈ Nn). Each system defines a homomorphism

Φ : Mn −→ F (X) : (αi,j)i,j 7→
n

∑
i,j=1

αi,jλj ⊗ xi.

In fact, ∀a = (aij), b = (bij) ∈Mn and x ∈ X, it holds that ab = (∑k aikbkj) and

[Φ(a) ◦Φ(b)](x) = [∑
i,k

aikλk ⊗ xi] ◦ [∑
l,j

bl jλj ⊗ xl ](x)

= ∑
i,k

aikλk(∑
l,j

bl jλj(x)xl)xi

= ∑
i,k
(∑

j
aikbkjλj(x))xi

= [∑
i,j
(∑

k
aikbkj)λj ⊗ xi](x)

= Φ(∑
k

aikbkj)(x).

Therefore, Φ(ab) = Φ(a)Φ(b).
The identity in Mn is denoted by En. Clearly Φ(En) is an idempotent in F (X) and a projection

onto a subspace of X.
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A symmetric approximation property for X, which implies that K(X) is
amenable, was defined by Grønbæk, Johnson and Willis in [11, Definition 4.1] and the following
variant is given in [8, Definition 5.6.62]:

Let X be a Banach space. Then X is said to have property (A) if there is a directed set A such that, for
each α ∈ A, there exists nα ∈ N, a biorthogonal system of size nα with corresponding homomorphism
Φα, and an irreducible nα × nα matrix group Gα and such that:

(A)(i) (Φα(Enα) : α ∈ A) is a bounded approximate identity for A(X),
(A)(ii) sup{‖Φα(x)‖ : x ∈ Gα, α ∈ A} < ∞.

Set Pα = Φα(Enα) (α ∈ A). It is proved in [8, Theorem 5.6.63], a theorem which is attributed to N.
Grønbæk, B.E. Johnson and G.A. Willis ([11, Theorem 4.2]), that the foregoing property implies that
the Banach operator algebra K(X) is amenable.

Remark 1. Condition (A)(i), above, is equivalent to the following conditions
(iii) Pα(x)→ x (x ∈ X), and
(iv) P′α(λ)→ λ (λ ∈ X′).

Proposition 2. If condition (A)(i) above holds, then X has the bounded approximation property.

Proof. This follows from the first assertion of Theorem 1.

We define here the intended symmetric approximation property of type p, 1 ≤ p ≤ ∞, as follows:

Definition 1. Let X be a Banach space. Then X is said to have property (Ap) if there is a directed set A
such that, for each α ∈ A, there exists nα ∈ N, a biorthogonal system of size nα, ((xi)i≤nα

, (λj)j≤nα
) ∈

`s
p(X) × `w

p′(X′), with corresponding homomorphism Φα, and an irreducible nα × nα matrix group Gα and
such that:

(Ap)(í) (Φα(Enα) : α ∈ A) is a bounded approximate identity for Πmin
p (X),

(Ap)(íí) sup{κd
p(Φα(x)) : x ∈ Gα, α ∈ A} < ∞.

For p = ∞, the above definition is replaced by that of Grønbæk, Johnson and Willis in [11, Definition 4.1].

The next arguments arise immediately from the above definition.

Since Pα = ∑i≤nα
x∗i ⊗ xi is a finite rank operator on X, its dual has the form P′α = ∑i≤nα

x̂i ⊗ λi,
and so it is p-compact as the following computation shows: for each α, the triangle inequality and the
fact that κp(·) is an ideal norm give

κp(P′α) ≤ ∑
i≤nα

‖x̂i‖‖λi‖

= ∑
i≤nα

‖xi‖‖λi‖

= sup
‖x‖≤1

∑
i≤nα

‖xi‖|〈x, λi〉|

≤ sup
‖x‖≤1

( ∑
i≤nα

‖xi‖p)1/p( ∑
i≤nα

|〈x, λi〉|p
′
)1/p′ (Hölder’s inequality)

= ‖(λi)‖w
p′‖(xi)‖s

p.

(3.1)

Hence, for each α, it holds that

κd
p(Pα) ≤ ‖(λi)‖w

p′‖(xi)‖s
p, (3.2)

and so each Pα has a finite κd
p(·)-norm. That is, Pα ∈ Πmin

p (X) .
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Our assumption about the membership of (xi) and (λi) in the above definition as well as the
finiteness of the κd

p-norm on Pα should not come as a surprise. It has been proved in [5, Theorem 3.3]
that the operator ideal (Kp, κp) is associated to the tensor norm /dp, for 1 ≤ p < ∞, where dp is the
Chevet-Saphar norm defined by

dp(u) = inf{‖(xn)n‖w
p′‖(yn)n‖s

p},

where the infimum is taken over all the possible representations of u = ∑n
j=1 xj ⊗ yj. We denote by

/dp the left injective tensor norm associated to dp. We have that /dp = g′p′ (see for instance [12,
Theorem 7.20]), and hence /dp = (g∗p′)

t, where α∗ = (α′)t for a tensor norm α, and α∗ is called the
contragradient (or adjoint) of a tensor norm α.

Moreover, it holds that for any Banach spaces X and Y, Kmin
p (X, Y) 1

= X′
/dp
⊗ Y ([5, Remark 3.8]).

Since Y has the κp-approximation property if and only if Kmin
p (X, Y) 1

= Kp(X, Y) for every Banach
space X (cf. [5, p. 11]), we have that for each α, κp(P′α) ≤ ∑i≤nα

‖xi‖‖λi‖ < ∞ and in our case,
whenever Y = X has the κp-approximation property, then on identifying a tensor product with the
operator it represents,

κp(P′α) = /dp(P′α) ≤ dp(P′α) ≤ ‖(λi)‖w
p′‖(xi)‖s

p, (3.3)

which recovers Eqn(3.2) above.

The question of uniform bound of net (Pα) in α is of utmost importance and is the next one to be
addressed.

Since (xi)i ∈ `s
p(X) in the definition of the property Ap, it is clear that for each

x∗ ∈ X′, ∑i |〈x∗, xi〉|p < ∞ and that

sup
x∗∈BX′

(∑
i
|〈x∗, xi〉|p)1/p < ∞,

too. In fact, we have that for any x∗ ∈ X′

(∑
i
|〈x∗, xi〉|p)1/p ≤ (∑

i
‖xi‖p)1/p‖x∗‖.

This says that `s
p(X) is a linear subspace of `w

p (X). Since the standard unit vector basis in `p′ (resp. c0

if p = 1) is always a weak `p sequence in `p′ (resp. c0), the inclusion of `s
p(X) in `w

p (X) is strict, unless
X is finite dimensional.

Proceeding from Eqn(3.1) we have

κd
p(Pα) ≤ sup

‖x‖≤1
( ∑

i≤nα

‖xi‖|〈x, λi〉|)

= sup
‖x∗‖≤1,‖x‖≤1

( ∑
i≤nα

|〈x∗, xi〉||〈x, λi〉|)

≤ sup
‖x∗‖≤1,‖x‖≤1

( ∑
i≤nα

|〈x∗, xi〉|p)1/p( ∑
i≤nα

|〈x, λi〉|p
′
)1/p′

= sup
‖x‖≤1

( ∑
i≤nα

|〈x, λi〉|p
′
)1/p′ sup

‖x∗‖≤1
( ∑

i≤nα

|〈x∗, xi〉|p)1/p

= ‖(λi)i‖w
p′‖(xi)i‖w

p .

It follows that
κd

p(Pα) ≤ ‖(λi)i‖w
p′‖(xi)i‖w

p . (3.4)
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Clearly, Eqn(3.4) offers a better estimate of the κd
p(·)-norm of Pα than Eqn(3.2).

We will prove that our definition of the property (Ap) implies that the Banach algebra Kd
p(X) of

dual p-compact bounded linear operators on X is amenable. Although we will follow the method of
[8, Theorem 5.6.63] (also see [11]), it must be pointed out that our result, namely Theorem 4 below,
is a ‘p-level’ version of [8, Theorem 5.6.63] and this is, consequently, a special case when p = ∞ since
Kd

∞(X) = K∞ = K(X).

We observe that if condition (Ap)(í) holds, then for any T ∈ Πmin
p (X) it holds that

(v) strong-limα PαT = T = strong-limα TPα.
Let T ∈ Πmin

p (X). Then there exists a sequence (Tn) in F (X) such that T = κd
p − limn Tn. It follows

from Eqn(1.4) that
‖T − Tn‖ ≤ κd

p(T − Tn),

where ‖ · ‖ = ‖ · ‖op, since T − Tn ∈ B(X). Hence T = ‖ · ‖ − limn Tn, and so T ∈ A(X). Therefore
Πmin

p (X) ⊆ A(X) boundedly. Hence condition (v) implies that condition (iii) and (iv) are satisfied,
whence condition (A)(i) follows. Therefore condition (Ap)(í) implies condition (A)(i) as might be
expected from the fact that Πmin

p (X) ⊆ A(X) boundedly as normed spaces. Thus condition (Ap)(í)
implies, via Proposition 3.6, that X has bounded approximation property. Of course, (Ap)(íí) implies
(A)(ii) by Eqn(1.4).

Alternatively, it follows from Eqn(2.3) and the fact that Πmin
p (X) ⊆ A(X) that (Ap)(í) and (Ap)(íí)

imply (A)(i) and (A)(ii), respectively, so that the symmetric approximation property of type p (namely
Ap) implies the (classical) symmetric approximation property (namely A). Whence, by Proposition 2
again, X has bounded approximation property.

Remark 2. Since ‖ · ‖ and κd
p(·) are not equivalent, (A) does not imply (Ap), and this very fact makes (Ap)

worthy of study in relation to amenability at the p-level.

Proposition 3. If condition (Ap)(i) holds then X has the approximation property of type p for all p ≥ 1.

Proof. This follows from Proposition 2 and Proposition 4.8 in [7].

Theorem 4. Let X be a Banach space having property (Ap), 1 ≤ p ≤ ∞. Then Kd
p(X) is amenable.

Proof. Let U = Kd
p(X)⊗̂Kd

p(X) and π = πKd
p(X). We will show that Kd

p(X) has an approximate
diagonal in U .

For α ∈ U , define dα ∈ U by

dα =
1
|Gα| ∑

x∈Gα

Φα(x)⊗Φα(x−1).

By condition (Ap)(íí), (dα : α ∈ A) is a bounded net in U . For,

∑
x∈Gα

‖Φα(x)‖‖Φα(x−1)‖ ≤ ∑
x∈Gα

κd
p(Φα(x))κd

p(Φα(x−1))

≤ (sup{κd
p(Φα(x) : x ∈ Gα, α ∈ A)})2|Gα|,

by (Ap)(íí), whence as an ideal norm, κd
p(·) leads to

κd
p(dα) ≤

1
|Gα| ∑

x∈Gα

‖Φα(x)‖‖Φα(x−1)‖

≤ (sup{κd
p(Φα(x) : x ∈ Gα, α ∈ A)})2.
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Take T ∈ Kd
p(X). By proposition 3, X has the approximation property of type p. Therefore Kd

p(X) =

F (X)
Kd

p = Πmin
p (X) by [7, Theorem 4.5] and [7, Remark 2.7], respectively. Since π(dα) = Pα by a

straight forward computation, it follows from (Ap)(í) that

κd
p- lim

α
π(dα)T = T.

We also have
κd

p- lim
α

PαTPα = T,

since

κd
p- lim

α
(PαTPα − T) = κd

p- lim
α
− κd

p- lim
α

PαT

= κd
p- lim

α
(Pα(TPα − T))

= [κd
p- lim

α
Pα][κ

d
p- lim

α
(TPα − T)] = 0.

By Proposition 1, dα is a diagonal of Mnα and so we have

PαTPα · dα = dα · PαTPα.

Thus

κd
p- lim

α
(T · dα − dα · T) = κd

p- lim
α
((T − PαTPα)) · dα − dα · (T − PαTPα)) = 0.

This shows that (dα : α ∈ A) is an approximate diagonal for κd
p(X). By Theorem 2, the Banach algebra

κd
p(X) is amenable.

Corollary 1. Let X be a Banach space having property (Ap), 1 ≤ p ≤ ∞. Then Πmin
p (X) is amenable.

Proof. This follows from the proof of the previous theorem (Theorem (4)), Proposition 3, [7,
Theorem 4.5] and [7, Remark 2.7].

The following lemma is inspired by the proof of [1, Theorem 4.1].

Lemma 2. Let X be a Banach space, F be the operator ideal of all finite rank operators between Banach spaces
and let γ be any operator ideal norm on F . Suppose that (Tα) is a bounded approximate identity of bound λ

for A(X). Then for every F ∈ F (X) it holds that limα γ(F− TαFTα) = 0.

Proof. Write F = RS, with R, S ∈ F (X). Then

γ(F− TαFTα) = γ((R− TαR)S + TαR(S− STα))

≤ ‖R− TαR‖γ(S) + λγ(R)‖S− STα‖,

and the right-hand side tends to zero as α→ ∞.

Theorem 5. Let µ be a positive measure on a set S and let p ∈ [1, ∞] and q ∈ [1, ∞). Then the algebra
Kd

p(Lq(µ)) is amenable.

Proof. First consider the case q > 1 and let q′ be the conjugate index to q. We will show that
the condition (Ap)(i) holds. With the notation as in [8], consider the collection of families S of
finitely many, pairwise disjoint, measurable subsets L of S with 0 < µ(L) < ∞. Set S1 ≺ S2 if
each member of S1 is the union of a subfamily of S2. The biorthogonal system corresponding
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to S = {L1, ..., Ln} is ((χL1 /µ(L1)
1/p, ..., χLn /µ(Ln)1/p), (χL1 /µ(L1)

1/q, ..., χLn /µ(Ln)1/q)), the
corresponding homomorphism into F (Lp(µ)) is denoted by ΦS with the corresponding projection
denoted by PS . Note that

‖∑
i≤n

αiχLi /µ(Li)
1/q‖ = ∑

i≤n
|αi|q (α1, . . . , αn ∈ C).

Then for each S = {L1, . . . , Ln} we have ‖PS‖ ≤ 1 since for every g ∈ Lq(µ) it follows that

‖PS(g)‖
q
q = ‖∑

i≤n
(

χLi

µ(Li)
1
q′
⊗

χLi

µ(Li)
1
q
)(g)‖q

q

= ‖∑
i≤n

µ(Li)
−1/q′(

∫
Li

g)µ(Li)
−1/qχLi‖

q
q

= ‖∑
i≤n

χLi

µ(Li)1/q′ (g)
χLi

µ(Li)
1
q
‖q

q

= ∑
i≤n

µ(Li)
−q/q′(|

∫
Li

g|)q

≤ ∑
i≤n

µ(Li)
−q/q′µ(Li)

q/q′
∫

Li

|g|q [by Hölder’s inequality]

= ∑
i≤n

∫
Li

|g|q

= ‖g‖q
q.

Furthermore, for each L ∈ S ,PS (χL) = P ′S (χL) = χL. For

PS (χL) = ∑
i≤n

χLi

µ(Li)
1
q′
(χL)

χLi

µ(Li)
1
q

= ∑
i≤n

(∑
k≤n

∫
Lk

χLi (w)

µ(Li)
1
q

χL(w))
χLi

µ(Li)
1
p

=
1

µ(L)
(
∫

L
χL(w))χL

= χL.

Similarly,

P′S (χL) = ∑
i≤n

ˆ
(

χLi

µ(Li)
1
q
)(χL)

χLi

µ(Li)
1
q′

= ∑
i≤n

1
µ(Li)

(
∫

χL(w)χLi (w)dµ)χLi

=
1

µ(L)
∑
k≤n

(
∫

Lk

χL(w)dµ)χL

=
1

µ(L)

∫
L

χL(w)dµχL

= χL.

For every f ∈ Lq(µ) there exists a sequence ( fn) of simple functions in Lq(µ) such that∫
| fn(w)− f (w)|qdµ −→ 0,
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whereas with fk = ∑i≤n αi
(k)χLi , say, we have PS f = fk = ∑i≤n αi

(k)PS (χLi ) = fk from the above
deliberations. It follows from ‖ · ‖-boundedness
(= ‖ · ‖op−boundedness) of each PS that

PS f = lim
k

PS fk

= lim
k

fk

= f .

(3.5)

Now fix f ∈ Lq(µ) and let U be any neighbourhood of f . Then, by Eqn (3.5), PS f ∈ U, whence it
follows that there exists S0 (namely, any S) such that PS f ∈ U for every S such that S0 ≺ S . It follows
that PS f −→ f or that

lim
S

PS f = f . (3.6)

Similarly, for all λ ∈ Lq′(µ),

|P′S (λ)( f )− λ( f )| = |λ(PS f )− λ( f )| ≤ ‖λ‖‖PS ( f )‖ = 0.

Hence P′S (λ)( f )− λ( f ) = 0 for all f and so

P′S (λ) = λ. (3.7)

Whence limS P′S (λ) = λ by a similar reasoning. Therefore PS is a left approximate identity for
A(Lq(µ)) and also a right approximate identity for (Lq(µ). Since ‖PS‖ ≤ 1 for every S , it follows
from Lemma 2 that limS κd

p(T − PSTPS ) = 0 for every T ∈ Πmin
p (Lq(µ)); that is, (PS ) is a bounded

approximate identity in Πmin
p (Lq(µ)).

By Eqn(3.4) we have that

κd
p(PS ) ≤ ‖(χLi /µ(Li)

1/q′)‖w
p′‖(χLi /µ(Li)

1/q)‖w
p .

Since
( ∑

i≤nS

|
χLk

µ(Lk)
1/q (

χLi

µ(Li)1/q )|
p′)1/p′ = 1,

it follows that ‖(χLi /µ(Li)
1/q′)‖w

p′ = 1.
Similarly,

( ∑
i≤nS

|
χLi

µ(Lk)
1/q′ (

χLi

µ(Li)1/q )|
p)1/p = 1

implies that ‖(χLi /µ(Li)
1/q)‖w

p = 1.
Therefore, κd

p(PS ) ≤ 1 for every S , and hence (PS ) is a bounded net in Πmin
p (Lq(µ)). The bound of 1

in this case improves on the bound of nS one would obtain if Eqn(3.3) were used, and which equation
would hold via the deliberations using the left injective tensor norm /dp(·) associated to dp(·) as
before, since Lq(µ) has the approximation property, and hence, has the κp- approximation property as

well by [5, Proposition 3.10], and so, κd
p(Lq(µ))

1
= Lq′(µ)

/dp
⊗ Lq(µ) does hold by [5, Proposition 3.11].

To sum up, we have proved that (PS ) is a bounded approximate identity for Πmin
p (Lq(µ)) and so the

condition (Ap)(í) holds.
Next let S = {L1, . . . , LnS } and let GS be the group of matrices of the form DtEσ, where Dt is the

diagonal matrix defined by t = (tiδi,j), and where we have taken ti, . . . , tnS ∈ {−1, 1} and Eσ is the
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matrix which corresponds to permutation σ of NnS . Then GS is an irreducible nS × nS matrix group.
Observe that, if x = DtEσ ∈ GS , then we have

ΦS (x) = ∑
i≤nS

tiµ(Li)
−1/q′χLi ⊗ µ(Lσ(i))

−1/qχLσ(i)
.

Hence
κd

p(ΦS (x)) ≤ ‖(tiχLi /µ(Li)
1/q′)‖w

p′‖(χLσ(i)
/µ(Lσ(i))

1/q′)‖w
p

by Eqn(3.4). As before, (∑i≤nS |
χLk

µ(Lk)
1/q (

χLi
µ(Li)

1/q )|p
′
)1/p′ = 1, and so

‖(tiχLi /µ(Li)
1/q′)‖w

p′ = 1.

Similarly, (∑i≤nS |
χLi

µ(Lk)
1/q′ (

χLi
µ(Li)

1/q )|p)1/p = 1, so that ‖(χLσ(i)
/µ(Lσ(i))

1/q′)‖w
p = 1. Therefore,

κd
p(ΦS (x)) ≤ 1, for every S and for every x ∈ GS , and hence

sup{κd
p(ΦS (x)) : x ∈ GS , families S} < ∞,

and this proves the condition Ap(íí). Thus Lq(µ) has property (Ap), and the result follows in this case
(where q > 1).

Now suppose that q = 1 and µ(S) < ∞. Then the above argument, with small notational
changes shows that L1(µ) has the symmetric property (Ap), and hence has an approximate diagonal
of κd

p-bound 1 for Kd
p(L1(µ)).

Finally consider the case q = 1 and µ a general positive measure, not necessarily σ-finite. For
each measurable subset T of S, we regard L1(µ|T) as a closed linear subspace of L1(µ). The
approximate diagonals for Kd

p(L1(µ|T)) of κd
p(·)-bound 1 constructed as above fit together in an

obvious way to give another bounded net in L1(µ)⊗̂L1(µ) such that this net is an approximate
diagonal for Kd

p(L1(µ)). Thus Kd
p(L1(µ)) is amenable.

Then the classical case [8, Corollary 5.6.64] follows as a special case when p = ∞.

Corollary 2. Let µ be a positive measure on a set S and let q ∈ [1, ∞). Then the algebraK(Lq(µ)) is amenable.

It will be pleasing to have a characterization of amenable Banach algebras of p-compact operators
in terms of the symmetric property Ap. Such hopes are dashed by the following observation:

Recall that

Property(Ap)⇒ Property(A)⇒ BAP⇒ AP⇒ APp, ∀ p ≥ 1.

The converse fails, as the next proposition asserts.

Proposition 4. X has APp ; X has property (Ap) (1 ≤ p < ∞).

Proof. By [7, Example 4.9], there exists a subspace Y (say) of `q, 1 ≤ q < 2 without AP, and so
without property (A) (else it would have BAP and hence AP) but which has APp for each p ≥ 2.
This space cannot have property (Ap) either; else it would have property (A).

Theorem 6. Let X be a Banach space. If X′ has property (Ap), then X has property (Ap).

Proof. Suppose X∗ has property (Ap). Then there exists a net

((x∗i,α)i≤nα
, (x∗∗i,α)i≤nα

) (α ∈ A),
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of biorthogonal systems of size nα in `s
p(X′)× `w

p′(X′′) that satisfies the requirements of property (Ap)

for X′.
Next, we construct a net of finite biorthogonal systems for X as follows:
Let U and V be the sets of all finite dimensional subspaces of X and X′ respectively. Fix U ∈ U

and V ∈ V . The principle of local reflexivity guarantees the existence of a linear map (hence choose
it)

SU,V,α : span({x∗∗i,α|i = 1, . . . , nα} ∪U) −→ X

satisfying
(1) ‖SU,V,α‖ ≤ 2,
(2) SU,V,α|U = 1U ,
(3) 〈SU,V,α(x∗∗i,α), x∗〉 = 〈x∗, x∗∗i,α〉 for all x∗ ∈ span({x∗i,α} ∪V).
Order U × V × A by the cartesian product order and U , V by containment. By our construction,

{(SU,V,αx∗∗i,α, x∗j,α)|i, j = 1, . . . , nα} ((U, V, α) ∈ U × V × A)

is the desired net of finite biorthogonal systems.
We denote the lifts of matrix algebras and the projections that are associated to SU,V,α by ΦU,V,α

and PU,V,α, respectively. Thus, we have

ΦU,V,α = SU,V,αΦ′αiX and PU,V,α = SU,V,αP′αiX ,

where iX is the natural inclusion of X into X′′, and Pα’s are the property (Ap) projections for X′. Then
{PU,V,α} is a κd

p(·)-bounded set since

κd
p(PU,V,α) = κd

p(SU,V,αP′αiX)

≤ ‖SU,V,α‖κd
p(P′α)‖iX‖

≤ 2κd
p(P′α), (by (1) above)

= 2κp(P′′α )

= 2 ∑
i≤nα

‖x∗i,α‖‖x∗∗i,α‖

= 2‖(x∗∗i,α)‖w
p′‖(x∗i,α)‖s

p

by Eqn(3.2). Hence, the PU,V,α’s belong to Πmin
p (X) (alternatively, this follows from the fact that the

PU,V,α’s are finite rank operators on X and [7, Remark 2.7] applies).
Next we show that κd

p(PU,V,α) is uniformly bounded in (U, V, α), and so, (Ap)(íí) holds for X.
Each Pα : X′ −→ X′ is weakly compact (as a compact operator). Let R := P′α|X , where

P′α|X : X −→ X′′. Then R′′ = P′α (since R is also a weakly compact operator) by Lemma 1. Since
the Pα’s are the Property Ap projections for X′, it follows that κd

p(Pα) is uniformly bounded by (Ap)(íí)
and, hence, so is κp(P′α) by definition. Therefore, κp(P′U,V,α) = κp(R′′) = κp(P′α|X) ≤ κp(P′α) < ∞ in
(U, V, α). Hence, κd

p(PU,V,α) < ∞ in (U, V, α). That is (PU,V,α)U,V,α is a bounded net in Πmin
p (X). Our

last mission is to show that the net (PU,V,α)U,V,α is an approximate identity in Πmin
p (X).

Since property (Ap) for X′ implies property (A) for X′, it follows that Pα’s are the property
(A) projections for X′, a net of finite biorthogonal system is found as in [11, Theorem 4.3], namely
(PU,V,λ). Thus (PU,V,λ)U,V,α is a (κd

p(·))-bounded) approximate identity for A(X). It follows from
Lemma 2, that for every F ∈ F (X) it holds that limU,V,λ κd

p(F− PU,V,λFPU,V,λ) = 0.

Now, let T ∈ Πmin
p (X) = F (X)

κd
p(·) be an arbitrarily chosen operator. Then there exists a net

(Tα) ⊂ F (X) such that T = κd
p − limTα. Hence

limU,V,λκd
p(Tα − PU,V,λTPU,V,λ) = 0.
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Write

T − PU,V,λTPU,V,λ = (T − Tα) + (Tα − PU,V,λTαPU,V,λ)

+ (PU,V,λTαPU,V,λ − PU,V,λTPU,V,λ)

= (T − Tα) + (Tα − PU,V,λTαPU,V,λ)

+ PU,V,λ(Tα − T)PU,V,λ.

Then

κd
p(T − PU,V,λTPU,V,λ) ≤ κd

p(T − Tα) + κd
p(Tα − PU,V,λTαPU,V,λ)

+ κp[PU,V,λ(Tα − T)PU,V,λ]

≤ κd
p(T − Tα) + κd

p(Tα − PU,V,λTαPU,V,λ)

+ ‖PU,V,λ‖κd
p(Tα − T)‖PU,V,λ‖.

Hence
limU,V,λκd

p(T − PU,V,λTPU,V,λ) = 0 (3.8)

for every T ∈ Πmin
p (X). From Eqn(3.8) we have

κd
p(T − PU,V,λT) = κd

p[T − PU,V,λTPU,V,λ + PU,V,λ(TPU,V,λ − T)]

≤ κd
p[T − PU,V,λTPU,V,λ] + κd

p[PU,V,λ]‖TPU,V,λ − T‖

→ 0

using the fact that (PU,V,λ) is a ‖ · ‖-bounded approximate identity for A(X) by [11, Theorem 4.3], as
alluded to above.

Similarly,

κd
p(T − TPU,V,λ) = κd

p[T − PU,V,λTPU,V,λ + (PU,V,λT − T)PU,V,λ]

≤ κd
p[T − PU,V,λTPU,V,λ] + ‖PU,V,λT − T‖κd

p(PU,V,λ)

→ 0.

This completes the proof that (PU,V,λ)U,V,α is a (κd
p(·)-bounded) approximate identity for Πmin

p (X).

Corollary 3. The dual of the Enflo space does not have property (Ap).

Proof. If the dual of the Enflo space had property (Ap), then the Enflo space itself would have the
approximation property.

Theorem 7. Let K be a compact Hausdorff space and let (Ω, Σ, µ) be a measure space. Then Kd
p(C(K)) and

Kd
p(L∞(µ)), p ∈ [1, ∞), are amenable.

Proof. It was shown in the proof of Theorem 5 that Lq(µ) has property Ap whenever 1 ≤ q < ∞. In
particular, L1(µ) has property (Ap).

Since C(K)′ = L1(µK) for some measure space (ΩK, ΣK, µk), and L∞(µ) = C(Kµ) for a
well-chosen compact space Kµ, Theorem 6 above implies that C(K) and L∞(µ) have property Ap

as well. The proof is concluded by appealing to Theorem 4.
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4. Open Question and Concluding Remarks

By Remark 2, also Definition 1, we see that property (Ap) is not implied by property (A) of
Grønbæk, Johnson and Willis [11, Theorem 4.2]. We seek a concrete Banach space which establishes
nonequivalence of these two geometric properties:

Question 8. Give an example of a Banach space X such that X has property (A) but lacks property (Ap).

In this paper, we studied the notion of amenability within the framework of Banach algebras
of p-compact operators and its closely related ideals. We investigated this notion by means of the
geometric property (Ap). It is a rather strong condition on the underlying Banach space. However,
interesting observations and consequences like Proposition 4 and Theorem 4, among others, exhibit
it as a noteworthy geometric property of study in connection with amenability of Banach operator
algebras at the p-level.
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