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Abstract

The unsteady two-dimensional laminar flow of a viscous incompressible and electri-
cally conducting fluid through a channel with the one wall impermeable and the
other porous, under the influence of a transverse magnetic field is investigated. The
analysis is carried out using the integral method and the expressions for various flow
characteristics are obtained and discussed quantitatively.

1 Introduction

The study of flow through a channel with permeable walls not only possesses a the-
oretical appeal but also models biological and engineering systems. Some examples
in living organisms are fluid transport mechanisms among which are blood flow in
the circulatory system, airflow in the airways, flow system for transporting lymph,
urinary circulatory system and transpiration cooling. Another important example is
in nuclear power stations where the separation of Uranium Usss from Usss by gaseous
diffusion takes place. In a pioneering work, Berman [1] presented an ‘exact’ solution
of the Navier-Stokes equations that describes the steady two-dimensional flow of an
incompressible viscous fluid along a channel with parallel rigid porous walls, the flow
being driven by uniform suction or injection at the walls. He assumed that the solu-
tion had a similarity form and thereby reduced the problem to that of a non-linear
ordinary differential equation of fourth order with a pair of boundary conditions at
each wall. Sellars [2] extended Berman’s work to high suction Reynolds number.
Yuan and Finklestein [3] considered the flow in a porous circular pipe, obtaining so-
lutions for small suction and injection values and an asymptotic solution valid at large
injection values. Macey [4] analysed the flow in renal tubules as viscous flow through
a circular tube of uniform cross-section and permeable boundaries by prescribing the
radial velocity at the walls as an exponentially decreasing function of axial distance.
Terrill and Thomas [5] developed a theory further by considering laminar flow in a
porous pipe with constant suction or injection applied at the wall. They found that
for values of Reynolds number R in the range, 2.3 < R < 9.1, there were no solutions
in similarity form. Therefore, it is helpful to consider how the flows evolve, becoming
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‘unstable and bifurcating, as the Reynolds number increases. In this respect, numer-
ous authors (e.g., [6], [7], [8], [9], etc.) have developed and generalised this exact

solution.

Over the years, the remarkable influence of electromagnetic force on a conducting fluid
has been of great interest to scientists and engineers especially from the practical point
of view in understanding the operation of MHD power generators or accelerators and
seawater propulsion. Furthermore, it has been established that the biological systems
in general are greatly affected by the application of external magnetic field. In the
investigations reported in [10], it was observed that the heart pumping rate decreases
by exposing the human body to an external magnetic field.

Mathematically speaking, the problem of Magneto-Hydrodynamic (MHD) flow in-
volves solving the basic fluid dynamical equations together with that of electromag-
netism, see [11], in order to simulate real life problems. Mori [12] considered the
flow between two vertical plates which are electrically non-conducting. He assumed
the wall temperature to vary linearly in the direction of the flow and the existence
of a heat source in the vertical channel. Without any heat sources, the MHD flow
in a vertical parallel plate channel was discussed by Yu [13]. MHD free convection
between two parallel plates was studied by [14]. The problem of fully developed flow
between two vertical plates taking into account the radiation effects was studied by

[15].
MHD oscillatory flow of blood through channels of variable cross-section was in-
vestigated by [16]. Recently, [17] investigated the problem of steady MHD variable

viscosity plane-Poiseuille flow. The most amazing and significant result in their study
is the presence of a turning point in the flow field at low magnetic intensity.

In the present work, the unsteady flow in a channel with a permeable boundary in
the presence of an imposed transverse magnetic field is considered. Qur objective
is to study the combined effects of magnetic field and wall absorption on the flow
characteristics. In the following Sections, the problem is formulated, analysed and
discussed.

2 Mathematical Formulation

We consider the steady flow of a viscous electrically conducting fluid through a long
channel, with one wall permeable and the other impermeable, under the influence
of an externally applied homogeneous magnetic field. It is assumed that the fluid
is incompressible with small electrical conductivity and the electromagnetic force
produced is very small. Take a Cartesian coordinate system (z,y) where Oz lies
along the center of the channel, y is the distance measured in the normal section. Let
u and v be velocity components in the directions of z and y increasing respectively
and p the pressure. Then, in two-dimensions, the governing equations of continuity,

\\\%‘?% ©SAMSA J. Pure Appl. Math. 2001; 1(1):1-13




Makinde & Chinyoka

Unsteady MHD Flow 3

y=a
PR v
L—;u
yu=v=>0 y=0

Figure 1: Schematic diagram of the problem

momentum and energy are given in dimensional form as

Ou,  Ovy
9z, oy W
Ou. Ou. Ouy 10p. Ou? -o.B:
Ot + “bz, dy.  pOz, Oy  p e 2)
where B = (0, Bo) is the magnetic field vector.
The appropriate boundary conditions are
u, =0, on y=a, (3)
u, =0, on y=0, (4)

where a is the width of the channel, o, the electrical conductivity, p the fluid density, v
the kinematic viscocity, ¢, the specific heat at constant pressure, and k is the thermal

conductivity.
The absorption of fluid at the walls is accounted by prescribing the flow flux as an
arbitrary function of z. i.e.

. /0 " tudye = Uf (5”—) (14 ec), (5)

a
where U is the initial characteristic flow velocity (i.e. at z. = 0) and f(z./a) is the flux
function that describes the rate of fluid absorption through the permeable wall such
that f(0) = 1. It is also very important here to emphasise that f(z«/a) = constant
corresponds to the case of a channel with impermeable boundaries. Introducing the
following non-dimensional quantities: '
_ Ux U _ Tx _ Ys _ Px
u'—"av—’ v“'(—]"’ '75”“';7 y——(l—7 p"’pUg)

t. Ua o.Bia
- (az/y)7 e —V—_) H - pU (6)

t
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and substituting into equations (1)-(2), we obtain
ou  Ov
a2 =0 7
5z Tay = (7)
Ou du  Ou 1 9%
A AT A VIV gy - %) 8
g Tuge tvg, = et g e B ()
The boundary conditions reduce to
u=0 on y=0 (9)
u=0 on y=1 (10)
with )
| udy = fa)(1+ &™) (11)

where R, is the Reynolds, H is the Hartmann number and h(z,t) = Op/0z is the
pressure gradient.

From equation (7) we have

_[YOu
o Oz

Let the solution of the equations (7)-(8) be of the form

v = dy. (12)
u(z,y,t) = uo(z,y) + cus(z, y)e™

v(z,y,t) = vo(z, y) + evi(z, y)e™ (13)
h(z,t) = ho(z) + ehy(z)e™

where € is the small amplitude of oscillation and hence we can assume square and
higher order terms of € to be of negligibly small magnitude, and n is the pulse.
Substituting (13) into (7) and (8), and comparing the coeflicients of zero and first
order terms of ¢ on both sides, we obtain:

2oy %; o, | | (14)
uo%%) + vo%’f = —ho + —1%:%2;" — H?u,, (15)
uo—a—a—t;l + ul(?;;o + v %l;o + vofg;l = %6;;21 — hy — inuy — H?u;. (17)
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Ihitial at £ = 0,

U = Ug + €Uy (18)
v = vy + EVy (19)

h = h() + €h1. (20)

3 Method of Solution

From equations (14) and (16), we have

Y 0’&0

v == | "5;6@, (21)
y 3u1
v = b—m—dy, (22)

where y is any point between 0 and 1.
Using (21) and (22), equations (15) and (17) become

Oug Oug [Y¥ Oug 1. 0%
0x Oy Jo Oz dy +h
Ouq Oug Oug Y Ouy Ouy [¥ Jug . 1 ‘82u1
5 T T By e 3 Y By o 3z T T Re Gy
—(H* + in)uy. (24)

- HZUO, (23)

Uo

Ug

The additional two equations, which govern the moment of momentum in the = -
direction can be obtained by multiplying the equations (23) and (24) throughout by
y to get

Oug Oug (¥ Oug 1 0%y 5

_ = y— — 25

Yuo ax Yy 8y o aa: dy + yho yRe ay2 yH Ug, ( )
Ouy Ouo Oug ¥ Ouy Ouy ¥ Oug oy 0%uy

Y45z +y oz Y Oy Jo Oz dy = Oy Jo Oz dy+yhi = Re 0y?

—y(H? +in)u;. ' (26)

Integrating (by parts) equations (23) to (26) fromy =0 toy = 1 term by term and
simplifying gives :
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Oug 1 [ 3ug Jug g f1
—_— -t - H d 27
2/ Uo dy+ho ( ay By o /(; UplY, (27)
(9u1 1 (9u1 0u1
e o= — | 28 _ M
2/ U dy+2/ U dy+ 1= R ( 3 |y B |ymo
(H? +4 ' d 28
- in) fé u1dy, (28)
6u0 }Zo _ 1 BUO 2 i
2 (y“f’“a‘;) Yty =R Ay, Y [y, @)
1 0u1 ) h1 _ 1 0u1
2/ yuo-é—;dy + 2/ yul—(—?——dy + “é“ = Re ‘5&‘ -
72 v im) [ vued 30
—( +m)/0 yurdy. - (30)

Since the integral equations (27) to (30) contain six unknowns g, u1, ko and h; of
which hg, h; are functions of = only and while ug,u; are functions of both z and y.
We choose the solutions for up and u; in polynomial form as,

uo = fo(z) + yfi(2) + y* fo(z) + ¥°9(2), (31)
ui = Fo(z) + yFi(z) + y* Fy(z) + y°G(x), (32)
where fo, fi, f2,9, Fo, F1, F2, G, are arbitrary functions of z. These unknowns can be
obtained by substituting the conditions (15) and (17) into the equations (31) and
(32), to get
1 3
fo=Fo=0,i=6f+39, fo=—(6+59), (39
F =6f+-;—G, Fy=— (6f+-Z—G) .

Thus the assumed polynomial solutions in terms of unknowns i.e. g(z), G(z), f be-

come:
uo = 6f(y — ") + (v° — 3/2y" + y/2)g, (34)
w = 6f(y —y*) + (v° - 3/2y” + y/2)G, (35)
Substituting equations (34) to (35) into the equations (27)-(30), we obtain
dg 420 127 df |,
Y% "R —420( o T f+h), (36)
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dg df 2 1Y 12 df 5
(g-——l?f)-&;—- ( T +T7H" + 2R = —420f %“d +R+H + ho J(37)
dG dg 420 24f df 2
bl - = —42 H h
016 (2 -2) — oo (B L4 0 pims (38)
dG dG df 2 . - 420\
(g “12f)—+G(T'"12d — 7(H? +in) — Re) -
24 df ) ( )
—420f(5d +R +H +m)+420 o —h (39)
We eliminate ko and hy from equations (36) to (39) and obtain;
g df H*\
d+f(dx+Re+12 g=0, (40)
df = 35 2 _gdf dg
d:c+f(d:c+Re+12(H )>G “Fde Ao (41)
Equations (40) and (41) are solved using f = e~* and the results. The solutions are
12z R, — 420e* — 7Te*H?R, '
) — o (R -
. 122 R, — 420e® — 7e*H?R,
G = —i [(ReH2 + 60)ag exp ( z R, c )
. — z a:H2 ., — ;T .
LinR.ayoxp 122 R, — 420e” — 7Te* H*R, — Tie*nR ) /(nR), (43)
12R,
ho = g5 40( —60480e™" — 5040H%e ™" R, + a2B?{420¢” + Te"H*R. — 12R.}
+12096¢°R,)/R., (44)
. 1 -z 2 2 —:!:
hy = 5040 (60480e™“ RenH” + 5040 R.n R.

+ B2(50400ia2e” + 1680ia2e” H*R, — 1440ial R, — 24ia RZH” + 14iaj R2H'e")
+Bngaoa1(24nRz — 840nR.e* — 14nRZeZH2 — Tin* R%e%)
—94192¢2)" R?n) /(R?n) | (45)

We then take the real part of equation (13) in order to analyse the solutions.

u =

B 7 13 |
((66 (y — y?) + a1 B4 cos (Ee n) (—2—y - -2—y2 + y3)) cos(nt)
(——GOaOB — R.H?ag — a1 By cos (%exn) nRe) (%y — 22 4 y3) sin(nt))

nR,

1 3
—y— -y’ + yB) (46)

-~ - 2 B(
e+ 6e(y —y°)+ aobBy 5 5

o
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o, - ( ..1:2_ 1(12R. B4Bs — 420B,Bs — TH?R,B,Bs — TnR, B, By)

1, 1451 4) B 5a9(12R, — 420e” — 7e* H*R,) B,
(Zy — 3y +4y cos(nt)/R, R
<Re _ 35e° — i%‘f%ﬂ’f{e) H%aoB,
-—1150,177,( 12RgB4B3 + 4203283 -+ 7H2ReBzB3 - 7TI,ReBgB5)>

(1 Ly + ! 4) €
rea e
ao(12R, — 420e” — Te* H?R.) B, (1y* — 1y° + Ly?)

+ R (47)
where .
B = g ex 12z R, — 420e® — 7e*H*R, — Tie*nR,
0 T %o 12R, -
B = g ex 12z R, — 420e® — 7e*H*R, — Tie*nR,
LT foexR 12R, ’
92 . — z 7 :cHZ .
B, — aoexp< R, — 35¢ 15€ R, )
R,
. (T L
B;s = sin (Ee n) ,
R, — 35¢® — Le*H?R,
B, = agexp (:z: 5e” — e )
R,
7
Bs = cos (I—Q-e n)

and where ag, a; are undetermined constants The wall shear stress is given as

_ (20 o
Tw = dr Oy
= -—21— (12 cos(nt)R.ne™ + cos(nt) R.a; cos (ée“‘ﬁ) Bg

+60sin(nt)aoBs + sin(nt)R.H%aoBs + sin(nt)R.a;n sin (ig—e”n) Be) /(Ren) —

12¢e*R.n = agR.nByg
- R at y=0,1, (48}

where

122 R, — 420e® — 7e"H*R,

Bs = —
6 12R,
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AI Graphical Results and Discussion

1 —t=0
1T
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Figure 2: Axial velocity profile, H = 5, Rc = 5,n = 1/2,a0=0a=lLe=1lz=1
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Figure 4: Variation of pressure gradient with the magnetic field
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Figure 5: Variation of pressure gradient with axial distance H = 5,R. = §,n =
1 / 2, ag = a4y = 1

Figure 6: Variation of wall shear stress with axial distance H = 5,R. = 9,n =
1/2,y=1,a0=a; =1
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For numerical discussion of the above analytical results, we have taken ag = a; =
l,e=1, H=0,1,2,5, R.=5, t =0,n/4,7/2, .

Figure (2) shows the axial velocity profile which is parabolic in nature and fluctuate
with maximum magnitude at ¢ = 0, and minimum at ¢ = 7 due to the unsteadiness
effect. The effect of exponentially decreasing wall suction is shown in Figure (3). The
normal velocity is maximum at the wall and also fluctuate due to the unsteadiness
effect. From the mathematical point of view, we observed that the flow velocity is
reduced due to an increase in Magnetic field intensity. This ultimately leads to an
increase in magneticity of the fluid pressure gradient as shown in Figure (4). The
fluid pressure gradient decreases with axial distance due the suction effect (Figure 5).

The wall shear stress decreases with an increase in axial distance (Figure 6). This is
clearly due to the exponentially decreasing suction effect, however, the effect of the
magnetic field is to increase the wall shear stress.
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