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Abstract

Let R be any finite Completely Primary Ring and let b be an element of R of multiplicative order
p” — 1, where p is a prime and r is a positive integer. Then in this paper we show that there exists
a minimal Ko-basis for R, where K, =< b > U{0}. We also show that each element of R may be
uniquely expressed as a linear combination of the basis elements, and further show that the maximal
ideal M of R has a distinguished K,-basis.

1 Introduction

In this paper, all rings are finite, associative and have an identity. A completely primary ring is a ring R
in which the set M of all zero-divisors forms an ideal. Let R be a completely primary ring with maximal
ideal M and Galois subring R,. In [3], Raghavendran showed that R contains an element b of order p" —1
such that b+ M is a primitive element of R/M. This element plays an important role in the theory of
completely primary rings (e.g. see [1]).

In [4], Wilson developed a structure theory for R,-bimodules and Raghavendran proved in [3] that if V' is
a finite dimensional (F, F)-unital module, where F is the Galois field GF(p"), then, V possesses at least
one distinguished basis over F' (Theorem 1). Also, in [5], Wirt proved that if R is a completely primary
ring and R, is a coefficient subring of R, then there exist z1, ..., zx € M and o1, ..., o € Aut(R,) such

that R= R, ® Zle R,z;-and zi7 = r%z;, Vr € R, and Vi=1, ..., k.

So in Section 2 of this paper, we collect some preliminary results on completely primary rings and give a
slightly different treatment of the element b. In Section 3, we collect some facts on R,-bimodules, develop
some results on R-modules, and reprove Wirt’s result using an easier method. In Section 4, we show that
there exists a minimal K,-basis for the maximal ideal of R, where K, =< b > U{0}, and prove that every
element of R can be expressed uniquely as a linear combination of the basis elements with coefficients in
K,. Section 5 deals with more results on R-modules and finally extend the work of Raghavendran [3] to
all finite completely primary rings by proving the existence of a distinguished K,-basis for the maximal

ideal M of R.

2 Preliminaries

Let R be a completely primary ring with maximal ideal M. The following results will be assumed (see
[3]). Then |R| = p"", M| = pr=1r R/M = GF(p") the finite field of p" elements and CharR = ",
where 1 < k < n, for some prime p and positive integers n, r, k. Moreover, M is nilpotent and has index
of nilpotence [ for some [ < n. Thus, M contains a chain of ideals M D M2D...DOM1D M= {0}.
If k = n, then R = Z,»[b], where b is an element of R of multiplicative order p" — 1, M = pR and
Aut(R) & Aut(R/M). Such a ring is called a Galois ring and is denoted by GR(p™,p").

Proposition 2.1 Let R be a completely primary ring with mazimal ideal M. Then, there exists an
element b € R of multiplicative order p” — 1 such that if ¢ : R — R/M is a canonical homomorphism,
then (b) is a primitive element of R/M and K, =< b > U{0} forms a complete system of cosel
representatives of M in R. Further, if \, 1 € K, withA—p € M, then A= p.
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Proof Obviously, the group of units Gg of R is R~ M, and ¢ : R - R/M induces a surjective
multiplicative group homomorphism
* 6:Gr — (R/M)*.
Since Ker¢ = M, we have Kerf = 1+ M. In particular, 1 + M is a normal subgroup of Gg.
Let < B >= (R/M)* and let b, € 6~1(B). Then, the multiplicative order of b, must be a multiple of
p" — 1 and a divisor of
'R*— M‘ — pnr ___p(n—l)r — p(n—l)r(pr _ 1);
hence, of the form p’(p” — 1). But then b = 2" has multiplicative order p” — 1 and #(b2") = B°° which is

a generator of (R/M)*, since p* and p” — 1 are co-prime.
Further, ¢(K,) = R/M, and hence, K, is a complete set of coset representatives of M in R. Hence,

A, p € K, with A — p € M implies that A = p.
In what follows, b shall be taken to be an element of R satisfying the properties of Proposition 2.1.

Let R be a completely primary ring, |R/M| = p” and CharR = p¥. Then it can be deduced from
the main theorem in [2] that R has a coefficient subring R, of the form GR(p*", p*) which is clearly a

maximal Galois subring of R. Moreover., there exist my,mg,...,my € M and 01,03,...,0, € Aut(R,)
such that R
R=R,® Z@Romi (as R, — modules), m;r = r%'m;,
t=1 ’
for every r € R, and any i = 1,..., h. Moreover, 01, ..., 0, are uniquely determined by R and R, (see 1.6

in [1]). If S, is another coefficient subring of R then there exists an invertible element z in R such that
S, = zR,z~! (see theorem 8 in [3]). Finally, let R, be a maximal Galois subring of R. Then R, = Z«[b].
Let K, =< b > U{0}. Then it is easy to show that every element of R, can be written uniquely as

Zk"lpiz\,—, where \; € K,.

=0

Since R= R, ® Y ', ®@R,m;, it is easy to see that M = pR, ® Yr_, ®Rom;.

Corollary 2.2 Let R be a completely primary ring. Then every element of R can be expressed uniquely
in the form A+ m with A € K, and m € M.

Proof This follows easily from Proposition 2.1 since, A being a coset of M in R, the map ¢ : R — R/M
implies that the elements of R are of the form A+ m and from the fact that R = R, ® Zi.‘:l ®R,m;, and

elements of R, can be uniquely expressed in the form Zf;ol p' i, where \; € K,.

3 Some Module theory over Galois rings
We start with the following:

Proposition 3.1 Let R, be the Galois ring GR(p"",p") and let M be a finite R,-bimodule. Then, there
exrist 1, ..., x € M such that
M=R,x1®...® R,xx.

Moreover, if M = R,y1 ® ...® R,y is another such decomposition of M, then | = k and the order ideals
of the y; are (after possible reindezing) the order ideals of the z;.

This 1s essentially Corollary 2 of proposition 1.1 in [4].
Proposition 3.2 Let Ra be the Galois ring GR(p™",p"™) and let M be a finite R,-bimodule. Then,
M=M&M&..9M, (as R, — modules),

where for each i, 1 < i <r, there ezxist 0; € Aut(R,) such that mr, = r%im, Ym € M; and Vr, € R,.
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Proof Let f € Zy=[X] be monic, of degree v and irreducible modulo p. Then f splits into f = (X —
a1 ){X — ag)...(X — a;), where a4, ..., @, € R,. Since f modulo p has distinct roots in R,/pR,, we have
that @; # @; for ¢ # 7, in Ro/pR,. Thus, o; — a; is not in pR, and hence, is a unit in R,. Now, for

i=1, ..., r, define

fi = [](X — o), with j # .

j=1

Then,
filai) = (@ = 01) -+ (i — @iz1)(es — ig1) - (i — o)

is a unit in R,.
Let g = 5 i [fi(ei)]™'fi — 1. It is clear that g is of degree <= —1 and a3, ..., a, are roots of g.

Consider the canonical homomorphism

v: R, — R,[pR,

extended to
P R[X] — (RO/P:RO)[X]

Then, §(6s) = 0. But degree of § < r—1; so § = 0 because it has r roots. Let g = p*g, where (p, g,) =1
and 0 < k < n. Then, 0 = g(e;) = p¥g.(a;). Thus, g,(a;) is a zero-divisor and hence, go(@;) = 0; but g,
is of degree < r; so §o = 0. Thus, g, = 0 and hence,

r

S lfilea) i = 1.

i=1

Observe that if A € R,, then
¢’A M — M

m +—3> Am

is a left R,-homomorphism, and ¢, € Endg, (M ). Consider the map

QS: Ro — EndRO(M)
Ao ¢)\.

Tt is easy to see that ¢ is a ring-homomorphism and ¢(R,) is contained in the centre of the ring Endg, (M).

Let ¢ : M —> M be defined by o(m) = may; then, it is trivial to check that ¢ € Endg,(M). Since
#(R,) is contained in the centre of Endg, (M), there exists a ring-homomorphism

¢: RJX] — Endg,(M)
ZA;‘X’ — 245()\,')0".

Hence,

3 filad)] ™ fi) = idy € Endg,(M).
Let f = X" +a: X" ' + ...+ a,, where a; € Zp». Then,

(Hm) = (" +¢(a1)o" " + ...+ ¢(ar))(m)
= maj +a1ma’1"'1 +...+am
= mf(a1)
= 0.
Let i
M; = ¢([fila)] )M, 1 <i<r.

WY ©SAmsA J. Pure Appl. Math. 2001; 1(1):25-35



Finite completely primary rings 28

C.J. Chikunji

Then, since idyr = (3 [fi(a:)] " f:),
* M =M+ My + ...+ M,.

To show that this sum is direct, suppose, without loss of generality, that m € My N(Ma+...+ M, ). Now,
m € M, implies that m = ¢([f1(1)] 7" f1)(m1), for some my € M. Now,

(0= ¢la))(m) = (o= $(e)d([fala)]™ f1)(m1)
= $([fi(a)]7)B(f)(m1)
= 0.

On the other hand, since m € Ms + ...+ M,,
m= Y $([fi(ee)] " fi)(ms),
=2

for some my, ..., m, in M. Thus,

(0 = $(02))(0 ~ b(as)) - - (0 — $(er)) (m)

il

[T~ d(a)l 3 B(Lfi (o))~ £s) (ms)

i=2 i

= T - $(e)é(lf2le)]™ ) (o — $(az))d(f2)(m2)
11

r—1
+...4 [[ (o= (a)é(lf-(en)] ™) (o = $lar))(fr) (my)
i=2
= 0.

This implies that m = Y, _, &([fi(i)]"fiymi = 0 . Therefore, the sum is direct.

Now, for each m in M;, m = %([f,-(a,')]‘lﬂ')(m,-) for some m; in M, and

(0 —¢(ai))(m) = (o— ¢(ai))¢({f,-(a;)}_l)(%(f,')(m,-)
= ¢([fi(e)] ™) (o — $(es))d(F) (m:)
= 0.
Thus, o(m) = a;m; but o(m) = ma,. Consequently, for m in M;, ma; = a;m.

Since a and «; are roots of f in R,, there exists an automorphism o; of R, such that af* = o; (since
Aut(R,) is cyclic and isomorphic to Aut(R,/pR)). That is, for each m € M;, ma; = af*m. But every
element of R, can be written in the form Z'_(l) Ajo, where \j € Zpn and o €< b >. Thus, for any m
in M; and Vr, € R,,

mro—mZAaJ Z)\moﬂ Z)\ IYoim = (Z)\Joﬂl)"‘m*—r"’m

Corollary 3.3 Let M be a finite R,-bimodule, where R, is the Galois ring GR(p™",p"). Then, there
erist €1, ..., zx € M and 04, ..., 0 € Aut(R,) such that

M=R,z1®...® Roxx, and zir=r%%zx;, VYreR,.
This is the direct consequence of Propositions 3.1 and 3.2.

Proposition 3.4 Let M be a finite R,-bimodule, where R, is the Galois ring GR(p"",p"). Letm € M
and p* be the additive order of m. Then, |R,m| = p*

(©SAMSA J. Pure Appl. Math. 2001; 1(1):25-35
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Proof Consider the map
* ¢: R, —» Rem
roo— M.
Then, it is easy to see that ¢ is an R,-homomorphism and Ker¢ = p*R,. Therefore, R,m = R,/p'R,
and hence, |R,m| = p'".

We now state and reprove the following result of Wirt [5] in a simpler manner:

Proposition 3.5 Let R be a completely primary ring of order p™", |R/M| = p", CharR = p*, and let
R, be a marimal Galois subring of R. Then, there exist 21, ..., zn € M and o1, ..., on € Aut(R,) such
that
R=R,® Roz1®D...® Roxy, and zir =7%"z;, Vr E R, and Vi=1, ..., h.

Proof Consider M/pR,. This is clearly an R,-bimodule. Hence, by Corollary 3.3, Im; +pR,, ..., ms+
pR, € M/pR, and o1, ..., op € Aut(R,) such that M/pR, = @ Z?zl R,(m; + pR,) and (m; + pR,)r =
r%i(m; + pR,), Vr € R, and Vi = 1, ..., h. Suppose that p", .., p"* are the additive orders of
my + pR,, ..., my + pR,, respectively.

Let R, = Zy«[b], where b is as above, and let m;b = b%'m; + 7y, where r; € pR,. If 05 # idg,, put
s; = (b7 — b)~1r;, where (b% —b) is a unit in R, (because its image under the canonical homomorphism
R, — R,/pR, is not zero), and put z; = m; + s;. Then,

z:b = (m,' + Sg)b

= m;b+ s;b

= b7'm; +ri+sib
b% m; + (ba" - b)s,- + s;b
b7 m; + b%s;

o
b ;.

Il

I

Next, since p™ is the additive order of m; + pR,, p™z; € pR and hence p™ibx; = p™z;b. But p*izib=
pib%iz;; so ptibe; = p™ib%iz;. This implies that p™i(b — b7*)z; = 0 and hence, if p™iz; # 0, then b = b,
a contradiction, because o; # idg,. Therefore, p™iz; = 0.

If 0; = idg,, then

m; = mibpr'1 = T)'I,'I)bpr.-2 = (bm¢+ri)bpr“2 = (bm,-b—}-r;b)bpr"g
= (bzm,'—i-'r,‘b—}-r,'b)bpr_s =

= bf)r_lmi +(p" - 1)%ibpr—2 = mi+(p" — l)r,-bpr‘2;

and hence, (p” — 1)r; = 0, which implies that r; = 0, since p” — 1 is a unit. Hencé, m;b = bm,.

Let p™m; = p'iu;, where u; is a unit in R,. If n; > #;, then, p*(p™~*m; — u;) = 0 and hence,
p™~tim; — u; is a zero-divisor in R; a contradiction. Hence, n; < t;. Put z; = m; — p"~"'u;. In this
case, it is clear that the additive order of z; is p™*.

Thus, the additive orders of z1, ..., z are p**, ..., p™*, respectively.

Now, clearly,
h

M :pRo+ZRoz,-.

i=1

But, by Proposition 3.4,
|Rozi| = |Ro(mi + pR,)|

(©SAaMSA J. Pure Appl. Math. 2001; 1(1):25-35
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*

Now, by comparing orders, we deduce that

M=pR,® Roz1 ® ... 0 Rozp

and hence,
R=R,®R,x1®...D Rozxp.

Also, z;b = b7 z;.

Since every element of R, can be written uniquely as Z;:ol p'A; where A; € K, =< b > U{0}, then
VPG-Rm

k-1 k-1
nr = @) PNl = D P
=0 =0
k-1 ) k-1 ]
= D PN = D_pPNl7m
ji=0 j=0
= r%g;.

Proposition 3.6 Let R be a completely primary ring of order p™", |R/M| = p", CharR = p*, and let
R, be a mazimal Galois subring of R. Let oy, ...,04 € Aut(R,) be as defined in Proposition 3.5. Then,
o1, ...,0p are uniguely determined by R and R,.

Proof Let R, = Z,:[b], with b as above and suppose that
R=R,®Rez1® .. ®Rozh, =R, ®DR.y1 ® ... D Royp,

such that z;r = r%z;; yir = r¥iy;, ¥r € R, and Vi = l,...,h;lwhere z;, i € M and 0;,0; € Aut(R,).
Also, assume that o; and §; occur with multiplicity n; and n;, respectively. We want to prove (after
possible reindexing) that {oy,...,04} = {61, ...,04} and n; = n:-, Vi=1,..h

SinceVi=1,....h; 9 E M =pR,®Roz1D...H Rozp, and y; & pR,, ui =pr.~+2j rijaj, where rijjz; #0
for at least one j. Now,

pba‘ri + Zbg"r,‘jl‘j = by = yib = prib+ Zri.izjb
j i
= pbr; + Z bajr;j.’l,’j. (14)
J

Since the sums are direct, it follows, for all j, that
bir,iz; = b%ry;z;, and hence (b% — b9 )ri;z; = 0.

If now ri;x; # 0, then b% — 4% = 0 and so 6; = o;. This shows two things. On the one hand, since
rijz; # 0 for at least one j, it follows that 8; € {01, ...,05} and by symmetry {o4,...,0n} = {01, ...,04}.
On the other hand, if o; # 6; then r;;2; = 0 and so

@
Y = pri + Z TijT; € pR, ® Z Roz;.

oi=0; o;=8;

Hence, R, ® ZSBA=9.~ R,yx C R, ® E?,—:a.- Rozj.

By symmetry R, & Z?) =0, Botn = R, ® E?},___a‘_ R,z;. By Proposition 3.1, the number of summands is
the same. Hence, if 0; = 6; the multiplicities of o; and 6; are the same.

Definition We shall call oy, ..., o), defined above, the associated automorphisms of R with respect to

" ©SaAMsa J. Pure Appl. Math. 2001; 1(1):25-35
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Let B = {z1, ..., 21} be as above and let 7 € Aut(R,). Put
*
B, ={zxeB:zb=bz}
andlet M, =32 o Roz;.
Then, obviously, M, is an R,-submodule of M.

Corollary 3.7 Let R be a finite completely primary ring with mazrimal ideal M. Then,
M =pR, D Z?Efmmo M, as R, — modules.
4 Existence of a Minimal Basis for R

In this section, we show that there exists a Minimal Basis for R and that every element of R can be
expressed uniquely as a linear combination of a Minimal Basis for R with coefficients in K.

Let R be a finite completely primary ring with maximal ideal M. We know that M is nilpotent and has
index of nilpotence I for some [ < n. Thus, M contains a chain of ideals M D M2D...DMED
M = (0) (see Section 2).

Now, consider any quotient M?/M#+1, This becomes a vector-space over the field R/M on defining
(r+ M)(m+ M) =7 -m+ M
for any r € R, m € M.

Thus, M/M?2, M2/M?3, .., M1 /M (= M'~!) may all be considered as R/M-vector spaces, all of
finite dimension.

Let ¢; denote the dimension of the vector space M*~1/M* over R/M, fori=2, 3, ..., [, and let

Toydodeim+1 Mi, Toyd.teioit2 T Mi, O e M
be a basis for M*~1/M* foreachi = 2,...,1, where ¢; = 0. Consider the set {z1,...,Zc;, Te41,- -+, Teptest...ter }
of elements of M. Note that, since
M| = MM MELAB) - M MY,
we have
p(n——l)r — p’I'CQ X prc,3 . .prq — pr(c2+...+c1)’
and therefore, n — 1 = (¢ +. ..+ ¢;). Thus, we can write this set of elements of M as {z1,22,...,Zn-1}

Suppose 0 # = € M. Then z + M? € M/M?, and therefore there are elements A; + M with \; € K,
such that

2+ M2 = (A 4+ M)(@1+ M)+ o+ ey + M) (2, + M?) =) Nz + M2,

i=1

Hence,
€2
z = Zz\iz; + y, where y € M2
i=1
But then, y+ M3 € M2/M3, and therefore, we can find elements A; + M with A; € K, such that
ca+cs .
y= Z Ajz; + z,where z € M3,
j=ca+1
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Thus,
Cz+ca_
. £ = Z iz + 2.
fu=1

Continuing this process inductively, we find that there are elements A; € K, such that

n—1
= z Aiz; + w, where w € M’ = (0).
§=1
Hence,
n-1
T = Z )\,‘ T,
i=1
and therefore the elements z1, z2, ..., #,-; may be said to “span” M over K,. Furthermore, every
element of A may be expressed uniquely as a “linear combination” of 1, 23, ..., 2,1 with coefficients

in K,, for there are at most (p")"~! such combinations.

These results lead us to the following:

Definition Let R be any completely primary ring with maximal ideal M of index of nilpotence /, and
consider the R/M-vector spaces

MIM? M2IME, . MM

Consider any set {1, &3, ..., &n—1} of elements of M such that z; + M?, 2, + M2, ..., =z, + M?
is a basis for M/M?, zo,41 + M3, .., 2oy0c, + M3 is a basis for MZ/M3, .., and 2oyt por41 +
M, .., &n_1+ M is a basis for M'~1/M'. Then, we shall call the set {z1, £3, ..., Z,_1} a Minimal

Basis (M.B.) of M.

From what we have shown above, any M.B. of M has the property that any element of M may be
expressed uniquely as a linear combination Z?___'ll Miz; with \; € K,.

Now, let ¢y : R — R/M be the canonical homomorphism, and let P be the set of primitive elements of
R/M. Define a set
S ={z, € vH(P) : 0(z,) = p" — 1},

where o(z,) denotes the order of the element x,.
Then, any z, € S behaves exactly as the element b, and therefore, we can find an M.B. of M “over”
< 2o > U{0}. In fact, the element z, is interchangeable with b in all that has preceded.

Definition The set {z,, #1, 2, ..., ®,_1} will be called an M.B. of R if and only if z, € S and
{zy, €2, ..., Zn—1}is an M.B. of M.

Proposition 4.1 Let R be ¢ finite completely primary ring. Then, every element of R can be expressed
uniquely as a linear combination of the M.B. {z,, z1, 23, ..., Ta—1} with coefficients in < z, > U{0}.

Proof Let r € R. Then, by Corollary 3.6, there exists A €< z, > U{0}, m € M, such that r = A + m.

But since {21, 22, ..., T,—1} 1s an M.B. of M, we have that there exist \; €< z, > U{0} such that
n—1
m = Z /\,‘Z’,’.
i=1
Hence,
n—1 n—1
r=A+ Z Xz = (Az; Yz, + ZA;:&;,
i=1 i=1
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which is the required form.

*
The uniqueness of expression follows from the fact that there are at most (p”)” linear combinations, and
|R| = p™".

5 Some Module theory over finite completely primary rings

In this section, we will be concerned with collecting a number of results and constructions concerning
modules over finite completely primary rings.

Let R be a finite completely primary ring of order p™”, residue order p” and characteristic p*, with
maximal ideal M of index of nilpotence I. Let K, and b be as in Proposition 2.1. Let R, = Zp [b]
be a maximal Galois subring of R, M, = pR, = M N R,, its maximal ideal and R,/ M, = K, where
K = R/M. Let M be an R-module. Then, we have the following:

Definitions
(i) A K,-basis of M is a subset {my, mgy, ..., my} of M such that every element of M is uniquely

expressible as A\ymy + ...+ Aymy, A; € K,
(i) An R,-basis of M is a subset {my, ma, ..., mp} of M such that

M=Rmi &...6 R,my.
We now state and prove the following:

Proposition 5.1 Let M be an R,-module and {m;, mg, ..., my} € M. Then, the following are equiv-
alent:

(i) {m1, ma, ..., mp} is an R,-basis of M ;

(1) the non-zero elements of {p'm; : i=0, 1, ..., k—1; j=1, ..., h} form a K,-basis of M.

Proof
We first show that (i) implies (ii).
Notice that for every v =0, 1, ..., k — 1, the non-zero elements of

B, = {p’mj +p""'M : j=1, .., h}

are linearly indépendent over K. For let

h
> (A + Mo)(pYmj + pTIM) = p M,

j=1

with A; € K,. Then,
h

EE:AJPVWU EEPV+1A4
j=1

and so,
h h
— 1
Do Xp'my =pty rimg,
Jj=1 j=1

with r; € R,, where 2;.’:1 rym; = m, for some m € M. Hence,

h
> (A —prj)pm; =0,

Jj=1

and since
M=Rm & ... & R,myp,

(Aj —prj)p¥m; =0, forevery =1, ..., h.
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Now, if Aj # 0, then (A; — pr;) is invertible in R, and hence, p*m; = 0. But then p"m; # 0 implies
Aj = 0. Hence, the non-zero elements of B, are linearly independent over K.

It is obvious that the set C = {p’m; : i=0,1, .., k—1; j=1, 2, .., h} generates M over K,, since

and {1, p, p?, ...., P*"'} is a K,-basis of R,.

It remains to show that every element of M can be written uniquely as a K,-linear combination of the
non-gero elements of C. So, let

h k-1 h k-1
Yo dpimi =3 pipimy, (15)
j=11i=0 j=11i=0
/\ij)ﬂij € K;,. Then,
h A
>~ (oj + Mo)(mj +pM) =Y (po; + Mo)(m; + pM).
Jj=1 j=1

Since B, is K-independent, we have

Aoj + Mo = pioj + Mo,
for every j =1, ..., h. Since Aoy, pioj € K,, by Remark 1.1, Ag; = poj, for every j =1, ..., h. Now, (2)

gives
h h

SO+ Mo)(pmj +pPM) =Y (w5 + Mo)(pmj + p° M);

j=1 j=1
and since B is K-independent, we have

Atj = Pij,

for every j = 1, ..., h. Continuing the process,we see that A;; = uij, for every i =0, 1, ..., k—1 and
every j = 1, ..., h and this establishes our claim that every element of M can be written uniquely as a

K,-linear combination of the non-zero elements of C. This establishes that (i) implies (ii).

We now show that (ii) implies (i).

Since {1, p, ..., p*~'} is a K,-basis of R,, for every m € M, we have
k=1 h A k-1
m=3_ 3 Xgp'mi =3 (3 Niip')m,
i=0 j=1 j=1 i=0

with A;; € K,, Z::ol /\,-jpi € R,; hence, M = R,my + ....+ R,my,.

To show the sum is direct, let Z?:l rym; = 0, with 7; € R,. Then,

k-1
— ot
Tj = Z ’\zgp ’
o

and, hence,
k-1 A

Z Z /\,-jpimj = 0,

i=0 j=1
wjth Xij € K,; which implies Aj; = 0, for every i =0, 1, ..., k —1 and every j = 1, ..., h; provided
p'm; # 0. But then

k-1 )
Z /\,-jp’mj = O,
i—0

for every j =1, ..., h.
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Corollary 5.2 Let M be a finite R-module, where R is a finite completely primary ring, with mazimal
Galbis subring R,. Then M has an R,-basis (and hence, also a K,-basis).

Proof Clearly, M is also a finite R,-module and since R, is commutative M can be considered as an
R,-bimodule. Then, by Corollary 3.3, M has an R, basis (and by the previous Proposition, it has a
K ,-basis).

Corollary 5.3 Any finite completely primary ring has a R,-basis (and hence a K,- basis).

We complete this section by proving that the maximal ideal M of a completely primary ring R has a
distinguished K,-basis, considered as an R,-submodule of R.

We first introduce some notation which will be convenient for this purpose.

Let K = R/M and let o € Aut(K). Then o is given by o(z) = z?” for some v € {1, 2, ..., r}, and we

can consider the function
6 : K 0 ‘—_) Ko

A — A

which defines an automorphism on R, by

Z ;b — Z a,-bi”y.
We shall write A7 for \?" and (3" ;%)° for 3 ;5"

Definition. Let M be an R,-submodule of R, and let {m1, ...., m;} be an R,- or a K,-basis of M. We
say that {my, ..., mp} is distinguished if there exist oy, ...., o} € Aut(K) such that fori=1, ..., h,

m,'b = b""m,:.

We now state the following proposition which extends the work of Raghavendran to all completely primary
rings:

Proposition 5.4 Let R be a finite completely primary ring with mazimal ideal M. Then, M has a
distinguished K,-basis.

Proof This follows directly from Corollary 3.3, since M is, in a natural way, an R,-bimodule.
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