On the Structure of Finite Completely Primary Rings

by

Chiteng'a John Chikunji

Department of Mathematics & Statistics, The University of Zambia, Lusaka.

Abstract

Let R be any finite Completely Primary Ring and let b be an element of R of multiplicative order p^r-1 , where p is a prime and r is a positive integer. Then in this paper we show that there exists a minimal K_o -basis for R, where $K_o = \langle b \rangle \cup \{0\}$. We also show that each element of R may be uniquely expressed as a linear combination of the basis elements, and further show that the maximal ideal \mathcal{M} of R has a distinguished K_o -basis.

1 Introduction

In this paper, all rings are finite, associative and have an identity. A completely primary ring is a ring R in which the set \mathcal{M} of all zero-divisors forms an ideal. Let R be a completely primary ring with maximal ideal \mathcal{M} and Galois subring R_o . In [3], Raghavendran showed that R contains an element b of order p^r-1 such that $b+\mathcal{M}$ is a primitive element of R/\mathcal{M} . This element plays an important role in the theory of completely primary rings (e.g. see [1]).

In [4], Wilson developed a structure theory for R_o -bimodules and Raghavendran proved in [3] that if V is a finite dimensional (F, F)-unital module, where F is the Galois field $GF(p^r)$, then, V possesses at least one distinguished basis over F (Theorem 1). Also, in [5], Wirt proved that if R is a completely primary ring and R_o is a coefficient subring of R, then there exist $x_1, ..., x_k \in \mathcal{M}$ and $\sigma_1, ..., \sigma_k \in Aut(R_o)$ such that $R = R_o \oplus \sum_{i=1}^k R_o x_i$ and $x_i r = r^{\sigma_i} x_i$, $\forall r \in R_o$ and $\forall i = 1, ..., k$.

So in Section 2 of this paper, we collect some preliminary results on completely primary rings and give a slightly different treatment of the element b. In Section 3, we collect some facts on R_o -bimodules, develop some results on R-modules, and reprove Wirt's result using an easier method. In Section 4, we show that there exists a minimal K_o -basis for the maximal ideal of R, where $K_o = \langle b \rangle \cup \{0\}$, and prove that every element of R can be expressed uniquely as a linear combination of the basis elements with coefficients in K_o . Section 5 deals with more results on R-modules and finally extend the work of Raghavendran [3] to all finite completely primary rings by proving the existence of a distinguished K_o -basis for the maximal ideal \mathcal{M} of R.

2 Preliminaries

Let R be a completely primary ring with maximal ideal \mathcal{M} . The following results will be assumed (see [3]). Then $|R| = p^{nr}$, $|\mathcal{M}| = p^{(n-1)r}$, $R/\mathcal{M} \cong GF(p^r)$ the finite field of p^r elements and $CharR = p^k$, where $1 \leq k \leq n$, for some prime p and positive integers n, r, k. Moreover, \mathcal{M} is nilpotent and has index of nilpotence l for some $l \leq n$. Thus, \mathcal{M} contains a chain of ideals $\mathcal{M} \supseteq \mathcal{M}^2 \supseteq \ldots \supseteq \mathcal{M}^{l-1} \supseteq \mathcal{M}^l = \{0\}$. If k = n, then $R = \mathbb{Z}_{p^n}[b]$, where b is an element of R of multiplicative order $p^r - 1$, $\mathcal{M} = pR$ and $Aut(R) \cong Aut(R/\mathcal{M})$. Such a ring is called a $Galois\ ring$ and is denoted by $GR(p^{nr}, p^n)$.

Proposition 2.1 Let R be a completely primary ring with maximal ideal \mathcal{M} . Then, there exists an element $b \in R$ of multiplicative order $p^r - 1$ such that if $\psi : R \to R/\mathcal{M}$ is a canonical homomorphism, then $\psi(b)$ is a primitive element of R/\mathcal{M} and $K_o = \langle b \rangle \cup \{0\}$ forms a complete system of coset representatives of \mathcal{M} in R. Further, if λ , $\mu \in K_o$ with $\lambda - \mu \in \mathcal{M}$, then $\lambda = \mu$.

Proof Obviously, the group of units G_R of R is $R - \mathcal{M}$, and $\phi: R \to R/\mathcal{M}$ induces a surjective multiplicative group homomorphism

 $\theta: G_R \to (R/\mathcal{M})^*$.

Since $Ker\phi = \mathcal{M}$, we have $Ker\theta = 1 + \mathcal{M}$. In particular, $1 + \mathcal{M}$ is a normal subgroup of G_R .

Let $<\beta>=(R/\mathcal{M})^*$ and let $b_o \in \theta^{-1}(\beta)$. Then, the multiplicative order of b_o must be a multiple of p^r-1 and a divisor of

 $|R - \mathcal{M}| = p^{nr} - p^{(n-1)r} = p^{(n-1)r}(p^r - 1);$

hence, of the form $p^s(p^r-1)$. But then $b=b_o^{p^s}$ has multiplicative order p^r-1 and $\theta(b_o^{p^s})=\beta^{p^s}$ which is a generator of $(R/\mathcal{M})^*$, since p^s and p^r-1 are co-prime.

Further, $\phi(K_o) = R/\mathcal{M}$, and hence, K_o is a complete set of coset representatives of \mathcal{M} in R. Hence, $\lambda, \mu \in K_o$ with $\lambda - \mu \in \mathcal{M}$ implies that $\lambda = \mu$.

In what follows, b shall be taken to be an element of R satisfying the properties of Proposition 2.1.

Let R be a completely primary ring, $|R/\mathcal{M}| = p^r$ and $CharR = p^k$. Then it can be deduced from the main theorem in [2] that R has a coefficient subring R_o of the form $GR(p^{kr}, p^k)$ which is clearly a maximal Galois subring of R. Moreover, there exist $m_1, m_2, \ldots, m_h \in \mathcal{M}$ and $\sigma_1, \sigma_2, \ldots, \sigma_h \in Aut(R_o)$ such that

$$R = R_o \oplus \sum_{i=1}^h \oplus R_o m_i$$
 (as $R_o - \text{modules}$), $m_i r = r^{\sigma_i} m_i$,

for every $r \in R_o$ and any i = 1, ..., h. Moreover, $\sigma_1, ..., \sigma_h$ are uniquely determined by R and R_o (see 1.6 in [1]). If S_o is another coefficient subring of R then there exists an invertible element x in R such that $S_o = xR_ox^{-1}$ (see theorem 8 in [3]). Finally, let R_o be a maximal Galois subring of R. Then $R_o = \mathbb{Z}_{p^k}[b]$. Let $K_o = \langle b \rangle \cup \{0\}$. Then it is easy to show that every element of R_o can be written uniquely as $\sum_{i=0}^{k-1} p^i \lambda_i$, where $\lambda_i \in K_o$.

Since $R = R_o \oplus \sum_{i=1}^h \oplus R_o m_i$, it is easy to see that $\mathcal{M} = pR_o \oplus \sum_{i=1}^h \oplus R_o m_i$.

Corollary 2.2 Let R be a completely primary ring. Then every element of R can be expressed uniquely in the form $\lambda + m$ with $\lambda \in K_o$ and $m \in \mathcal{M}$.

Proof This follows easily from Proposition 2.1 since, λ being a coset of \mathcal{M} in R, the map $\psi: R \to R/\mathcal{M}$ implies that the elements of R are of the form $\lambda + m$ and from the fact that $R = R_o \oplus \sum_{i=1}^h \oplus R_o m_i$, and elements of R_o can be uniquely expressed in the form $\sum_{i=0}^{k-1} p^i \lambda_i$, where $\lambda_i \in K_o$.

3 Some Module theory over Galois rings

We start with the following:

Proposition 3.1 Let R_o be the Galois ring $GR(p^{nr}, p^n)$ and let M be a finite R_o -bimodule. Then, there exist $x_1, ..., x_k \in M$ such that

$$M = R_o x_1 \oplus \ldots \oplus R_o x_k$$
.

Moreover, if $M = R_o y_1 \oplus ... \oplus R_o y_l$ is another such decomposition of M, then l = k and the order ideals of the y_i are (after possible reindexing) the order ideals of the x_i .

This is essentially Corollary 2 of proposition 1.1 in [4].

Proposition 3.2 Let R_o be the Galois ring $GR(p^{nr}, p^n)$ and let M be a finite R_o -bimodule. Then,

$$M = M_1 \oplus M_2 \oplus ... \oplus M_r$$
 (as $R_o - modules$),

where for each $i, 1 \leq i \leq r$, there exist $\sigma_i \in Aut(R_o)$ such that $mr_o = r_o^{\sigma_i} m$, $\forall m \in M_i$ and $\forall r_o \in R_o$.

Proof Let $f \in \mathbb{Z}_{p^n}[X]$ be monic, of degree r and irreducible modulo p. Then f splits into $f = (X - \alpha_1)(X - \alpha_2)...(X - \alpha_r)$, where $\alpha_1, ..., \alpha_r \in R_o$. Since f modulo p has distinct roots in R_o/pR_o , we have that $\bar{\alpha}_i \neq \bar{\alpha}_j$ for $i \neq j$, in R_o/pR_o . Thus, $\alpha_i - \alpha_j$ is not in pR_o and hence, is a unit in R_o . Now, for i = 1, ..., r, define

$$f_i = \prod_{j=1}^r (X - \alpha_j)$$
, with $j \neq i$.

Then,

$$f_i(\alpha_i) = (\alpha_i - \alpha_1) \cdots (\alpha_i - \alpha_{i-1})(\alpha_i - \alpha_{i+1}) \cdots (\alpha_i - \alpha_r)$$

is a unit in R_o .

Let $g = \sum_{i=1}^r [f_i(\alpha_i)]^{-1} f_i - 1$. It is clear that g is of degree $\leq r - 1$ and $\alpha_1, \ldots, \alpha_r$ are roots of g.

Consider the canonical homomorphism

$$\psi: R_o \longrightarrow R_o/pR_o$$

$$r \longmapsto \bar{r}$$

extended to

$$\begin{array}{ccc} \psi: & R_o[X] & \longrightarrow & (R_o/pR_o)[X] \\ g & \longmapsto & \bar{g}. \end{array}$$

Then, $\bar{g}(\bar{\alpha}_i) = 0$. But degree of $\bar{g} \leq r - 1$; so $\bar{g} = 0$ because it has r roots. Let $g = p^k g_o$ where $(p, g_o) = 1$ and $0 \leq k < n$. Then, $0 = g(\alpha_i) = p^k g_o(\alpha_i)$. Thus, $g_o(\alpha_i)$ is a zero-divisor and hence, $\bar{g}_o(\bar{\alpha}_i) = 0$; but \bar{g}_o is of degree < r; so $\bar{g}_o = 0$. Thus, $g_o = 0$ and hence,

$$\sum_{i=1}^{r} [f_i(\alpha_i)]^{-1} f_i = 1.$$

Observe that if $\lambda \in R_o$, then

$$\begin{array}{cccc} \phi_{\lambda}: & M & \longrightarrow & M \\ & m & \longmapsto & \lambda m \end{array}$$

is a left R_o -homomorphism, and $\phi_{\lambda} \in End_{R_o}(M)$. Consider the map

$$\begin{array}{ccc} \phi: & R_o & \longrightarrow & End_{R_o}(M) \\ & \lambda & \longmapsto & \phi_{\lambda}. \end{array}$$

It is easy to see that ϕ is a ring-homomorphism and $\phi(R_o)$ is contained in the centre of the ring $End_{R_o}(M)$.

Let $\sigma: M \longrightarrow M$ be defined by $\sigma(m) = m\alpha_1$; then, it is trivial to check that $\sigma \in End_{R_o}(M)$. Since $\phi(R_o)$ is contained in the centre of $End_{R_o}(M)$, there exists a ring-homomorphism

$$\begin{array}{cccc} \tilde{\phi}: & R_o[X] & \longrightarrow & End_{R_o}(M) \\ & \sum \lambda_i X^i & \longmapsto & \sum \phi(\lambda_i)\sigma^i. \end{array}$$

Hence,

$$\tilde{\phi}(\sum [f_i(\alpha_i)]^{-1}f_i) = id_M \in End_{R_o}(M).$$

Let $f = X^r + a_1 X^{r-1} + ... + a_r$, where $a_i \in \mathbb{Z}_{p^n}$. Then,

$$\tilde{\phi}(f)(m) = (\sigma^{r} + \phi(a_{1})\sigma^{r-1} + ... + \phi(a_{r}))(m)
= m\alpha_{1}^{r} + a_{1}m\alpha_{1}^{r-1} + ... + a_{r}m
= mf(\alpha_{1})
= 0.$$

Let

$$M_i = \tilde{\phi}([f_i(\alpha_i)]^{-1}f_i)M, \ 1 \le i \le r.$$

C.J. Chikunji

Then, since $id_M = \tilde{\phi}(\sum [f_i(\alpha_i)]^{-1} f_i)$,

$$M = M_1 + M_2 + ... + M_r$$

To show that this sum is direct, suppose, without loss of generality, that $m \in M_1 \cap (M_2 + ... + M_r)$. Now, $m \in M_1$ implies that $m = \tilde{\phi}([f_1(\alpha_1)]^{-1}f_1)(m_1)$, for some $m_1 \in M$. Now,

$$(\sigma - \phi(\alpha_1))(m) = (\sigma - \phi(\alpha_1))\tilde{\phi}([f_1(\alpha_1)]^{-1}f_1)(m_1)$$

= $\phi([f_1(\alpha_1)]^{-1})\tilde{\phi}(f)(m_1)$
= 0.

On the other hand, since $m \in M_2 + ... + M_r$,

$$m = \sum_{i=2}^{r} \tilde{\phi}([f_i(\alpha_i)]^{-1}f_i)(m_i),$$

for some $m_2, ..., m_r$ in M. Thus, $(\sigma - \phi(\alpha_2))(\sigma - \phi(\alpha_3)) \cdots (\sigma - \phi(\alpha_r))(m)$

$$= \left[\prod_{j=2}^{r} (\sigma - \phi(\alpha_{j})) \right] \sum_{i} \tilde{\phi}([f_{i}(\alpha_{i})]^{-1} f_{i})(m_{i})$$

$$= \prod_{j=3}^{r} (\sigma - \phi(\alpha_{j})) \phi([f_{2}(\alpha_{2})]^{-1})(\sigma - \phi(\alpha_{2})) \tilde{\phi}(f_{2})(m_{2})$$

$$+ \ldots + \prod_{j=2}^{r-1} (\sigma - \phi(\alpha_{j})) \phi([f_{r}(\alpha_{r})]^{-1})(\sigma - \phi(\alpha_{r})) \tilde{\phi}(f_{r})(m_{r})$$

$$= 0.$$

This implies that $m=\sum_{i=2}^r \tilde{\phi}([f_i(\alpha_i)]^{-1}f_i)m_i=0$. Therefore, the sum is direct.

Now, for each m in M_i , $m = \tilde{\phi}([f_i(\alpha_i)]^{-1}f_i)(m_i)$ for some m_i in M, and

$$(\sigma - \phi(\alpha_i))(m) = (\sigma - \phi(\alpha_i))\phi([f_i(\alpha_i)]^{-1})\tilde{\phi}(f_i)(m_i)$$

= $\phi([f_i(\alpha_i)]^{-1})(\sigma - \phi(\alpha_i))\tilde{\phi}(f)(m_i)$
= 0.

Thus, $\sigma(m) = \alpha_i m$; but $\sigma(m) = m\alpha_1$. Consequently, for m in M_i , $m\alpha_1 = \alpha_i m$.

Since α_1 and α_i are roots of f in R_o , there exists an automorphism σ_i of R_o such that $\alpha_1^{\sigma_i} = \alpha_i$ (since $Aut(R_o)$ is cyclic and isomorphic to $Aut(R_o/pR)$). That is, for each $m \in M_i$, $m\alpha_1 = \alpha_1^{\sigma_i}m$. But every element of R_o can be written in the form $\sum_{j=0}^{r-1} \lambda_j \alpha_j^j$, where $\lambda_j \in Z_{p^n}$ and $\alpha_1^j \in \langle b \rangle$. Thus, for any m in M_i and $\forall r_o \in R_o$,

$$mr_o = m \sum \lambda_j \alpha_1^j = \sum \lambda_j m \alpha_1^j = \sum \lambda_j (\alpha_1^j)^{\sigma_i} m = (\sum \lambda_j \alpha_1^j)^{\sigma_i} m = r_o^{\sigma_i} m.$$

Corollary 3.3 Let M be a finite R_o -bimodule, where R_o is the Galois ring $GR(p^{nr}, p^n)$. Then, there exist $x_1, ..., x_k \in M$ and $\sigma_1, ..., \sigma_k \in Aut(R_o)$ such that

$$M = R_0 x_1 \oplus \ldots \oplus R_0 x_k$$
 and $x_i r = r^{\sigma_i} x_i$, $\forall r \in R_0$.

This is the direct consequence of Propositions 3.1 and 3.2.

Proposition 3.4 Let M be a finite R_o -bimodule, where R_o is the Galois ring $GR(p^{nr}, p^n)$. Let $m \in M$ and p^t be the additive order of m. Then, $|R_o m| = p^{tr}$.

Proof Consider the map

$$\phi: R_o \longrightarrow R_o n$$
 $r \longmapsto rm.$

Then, it is easy to see that ϕ is an R_o -homomorphism and $Ker\phi = p^tR_o$. Therefore, $R_om \cong R_o/p^tR_o$ and hence, $|R_om| = p^{tr}$.

We now state and reprove the following result of Wirt [5] in a simpler manner:

Proposition 3.5 Let R be a completely primary ring of order p^{nr} , $|R/\mathcal{M}| = p^r$, $Char R = p^k$, and let R_o be a maximal Galois subring of R. Then, there exist $x_1, ..., x_h \in \mathcal{M}$ and $\sigma_1, ..., \sigma_h \in Aut(R_o)$ such that

$$R = R_o \oplus R_o x_1 \oplus \ldots \oplus R_o x_h$$
 and $x_i r = r^{\sigma_i} x_i$, $\forall r \in R_o$ and $\forall i = 1, \ldots, h$.

Proof Consider \mathcal{M}/pR_o . This is clearly an R_o -bimodule. Hence, by Corollary 3.3, $\exists m_1 + pR_o$, ..., $m_h + pR_o \in \mathcal{M}/pR_o$ and σ_1 , ..., $\sigma_h \in Aut(R_o)$ such that $\mathcal{M}/pR_o = \bigoplus \sum_{i=1}^h R_o(m_i + pR_o)$ and $(m_i + pR_o)r = r^{\sigma_i}(m_i + pR_o)$, $\forall r \in R_o$ and $\forall i = 1, ..., h$. Suppose that p^{n_1} , ..., p^{n_h} are the additive orders of $m_1 + pR_o$, ..., $m_h + pR_o$, respectively.

Let $R_o = \mathbb{Z}_{p^k}[b]$, where b is as above, and let $m_i b = b^{\sigma_i} m_i + r_i$, where $r_i \in pR_o$. If $\sigma_i \neq id_{R_o}$, put $s_i = (b^{\sigma_i} - b)^{-1} r_i$, where $(b^{\sigma_i} - b)$ is a unit in R_o (because its image under the canonical homomorphism $R_o \longrightarrow R_o/pR_o$ is not zero), and put $x_i = m_i + s_i$. Then,

$$x_ib = (m_i + s_i)b$$

$$= m_ib + s_ib$$

$$= b^{\sigma_i}m_i + r_i + s_ib$$

$$= b^{\sigma_i}m_i + (b^{\sigma_i} - b)s_i + s_ib$$

$$= b^{\sigma_i}m_i + b^{\sigma_i}s_i$$

$$= b^{\sigma_i}x_i.$$

Next, since p^{n_i} is the additive order of $m_i + pR_o$, $p^{n_i}x_i \in pR$ and hence $p^{n_i}bx_i = p^{n_i}x_ib$. But $p^{n_i}x_ib = p^{n_i}b^{\sigma_i}x_i$; so $p^{n_i}bx_i = p^{n_i}b^{\sigma_i}x_i$. This implies that $p^{n_i}(b-b^{\sigma_i})x_i = 0$ and hence, if $p^{n_i}x_i \neq 0$, then $b = b^{\sigma_i}$, a contradiction, because $\sigma_i \neq id_{R_o}$. Therefore, $p^{n_i}x_i = 0$.

If $\sigma_i = id_{R_0}$, then

$$m_{i} = m_{i}b^{p^{r}-1} = m_{i}bb^{p^{r}-2} = (bm_{i} + r_{i})b^{p^{r}-2} = (bm_{i}b + r_{i}b)b^{p^{r}-3}$$

$$= (b^{2}m_{i} + r_{i}b + r_{i}b)b^{p^{r}-3} = \dots$$

$$= b^{p^{r}-1}m_{i} + (p^{r}-1)r_{i}b^{p^{r}-2} = m_{i} + (p^{r}-1)r_{i}b^{p^{r}-2};$$

and hence, $(p^r - 1)r_i = 0$, which implies that $r_i = 0$, since $p^r - 1$ is a unit. Hence, $m_i b = b m_i$.

Let $p^{n_i}m_i = p^{t_i}u_i$, where u_i is a unit in R_o . If $n_i \geq t_i$, then, $p^{t_i}(p^{n_i-t_i}m_i - u_i) = 0$ and hence, $p^{n_i-t_i}m_i - u_i$ is a zero-divisor in R; a contradiction. Hence, $n_i < t_i$. Put $x_i = m_i - p^{t_i-n_i}u_i$. In this case, it is clear that the additive order of x_i is p^{n_i} .

Thus, the additive orders of $x_1, ..., x_h$ are $p^{n_1}, ..., p^{n_h}$, respectively.

Now, clearly,

$$\mathcal{M} = pR_o + \sum_{i=1}^h R_o x_i.$$

But, by Proposition 3.4,

$$|R_o x_i| = |R_o(m_i + pR_o)|.$$

Now, by comparing orders, we deduce that

$$\mathcal{M} = pR_o \oplus R_o x_1 \oplus \ldots \oplus R_o x_h$$

and hence,

$$R = R_o \oplus R_o x_1 \oplus \ldots \oplus R_o x_h.$$

Also, $x_i b = b^{\sigma_i} x_i$.

Since every element of R_o can be written uniquely as $\sum_{j=0}^{k-1} p^j \lambda_j$ where $\lambda_j \in K_o = \langle b \rangle \cup \{0\}$, then $\forall r \in R_o$,

$$x_{i}r = x_{i}\left[\sum_{j=0}^{k-1} p^{j} \lambda_{j}\right] = \sum_{j=0}^{k-1} p^{j} x_{i} \lambda_{j}$$

$$= \left[\sum_{j=0}^{k-1} p^{j} \lambda_{j}^{\sigma_{i}}\right] x_{i} = \left[\sum_{j=0}^{k-1} p^{j} \lambda_{j}\right]^{\sigma_{i}} x_{i}$$

$$= r^{\sigma_{i}} x_{i}.$$

Proposition 3.6 Let R be a completely primary ring of order p^{nr} , $|R/\mathcal{M}| = p^r$, $Char R = p^k$, and let R_o be a maximal Galois subring of R. Let $\sigma_1, ..., \sigma_h \in Aut(R_o)$ be as defined in Proposition 3.5. Then, $\sigma_1, ..., \sigma_h$ are uniquely determined by R and R_o .

Proof Let $R_o = \mathbb{Z}_{p^k}[b]$, with b as above and suppose that

$$R = R_o \oplus R_o x_1 \oplus \ldots \oplus R_o x_h = R_o \oplus R_o y_1 \oplus \ldots \oplus R_o y_h,$$

such that $x_i r = r^{\sigma_i} x_i$; $y_i r = r^{\theta_i} y_i$, $\forall r \in R_o$ and $\forall i = 1, ..., h$; where $x_i, y_i \in \mathcal{M}$ and $\sigma_i, \theta_i \in Aut(R_o)$. Also, assume that σ_i and θ_i occur with multiplicity n_i and n'_i , respectively. We want to prove (after possible reindexing) that $\{\sigma_1, ..., \sigma_h\} = \{\theta_1, ..., \theta_h\}$ and $n_i = n'_i, \forall i = 1, ..., h$.

Since $\forall i = 1, ..., h$; $y_i \in \mathcal{M} = pR_o \oplus R_o x_1 \oplus ... \oplus R_o x_h$ and $y_i \notin pR_o$, $y_i = pr_i + \sum_j r_{ij}x_j$, where $r_{ij}x_j \neq 0$ for at least one j. Now,

$$pb^{\theta_i}r_i + \sum_j b^{\theta_i}r_{ij}x_j = b^{\theta_i}y_i = y_ib = pr_ib + \sum_j r_{ij}x_jb$$
$$= pbr_i + \sum_j b^{\sigma_j}r_{ij}x_j. \tag{14}$$

Since the sums are direct, it follows, for all j, that

$$b^{\theta_i}r_{ij}x_j = b^{\sigma_j}r_{ij}x_j$$
, and hence $(b^{\theta_i} - b^{\sigma_j})r_{ij}x_j = 0$.

If now $r_{ij}x_j \neq 0$, then $b^{\theta_i} - b^{\sigma_j} = 0$ and so $\theta_i = \sigma_j$. This shows two things. On the one hand, since $r_{ij}x_j \neq 0$ for at least one j, it follows that $\theta_i \in \{\sigma_1, ..., \sigma_h\}$ and by symmetry $\{\sigma_1, ..., \sigma_h\} = \{\theta_1, ..., \theta_h\}$. On the other hand, if $\sigma_j \neq \theta_i$ then $r_{ij}x_j = 0$ and so

$$y_i = pr_i + \sum_{\sigma_j = \theta_i} r_{ij} x_j \in pR_o \oplus \sum_{\sigma_j = \theta_i}^{\oplus} R_o x_j.$$

Hence, $R_o \oplus \sum_{\theta_{\lambda}=\theta_i}^{\oplus} R_o y_{\lambda} \subset R_o \oplus \sum_{\sigma_j=\theta_i}^{\oplus} R_o x_j$.

By symmetry $R_o \oplus \sum_{\theta_{\lambda}=\theta_i}^{\oplus} R_o y_{\lambda} = R_o \oplus \sum_{\sigma_j=\theta_i}^{\oplus} R_o x_j$. By Proposition 3.1, the number of summands is the same. Hence, if $\sigma_j = \theta_i$ the multiplicities of σ_j and θ_i are the same.

Definition We shall call σ_1 , ..., σ_h defined above, the associated automorphisms of R with respect to R_o .

Let $B = \{x_1, \ ..., \ x_h\}$ be as above and let $\tau \in Aut(R_o)$. Put

$$B_{\tau} = \{x \in B : xb = b^{\tau}x\}$$

and let $\mathcal{M}_{\tau} = \sum_{x_i \in B_{\tau}}^{\oplus} R_o x_i$.

Then, obviously, \mathcal{M}_{τ} is an R_o -submodule of \mathcal{M} .

Corollary 3.7 Let R be a finite completely primary ring with maximal ideal M. Then, $\mathcal{M} = pR_o \oplus \sum_{\tau \in AutR_o}^{\oplus} \mathcal{M}_{\tau}$ as $R_o - modules$.

4 Existence of a Minimal Basis for R

In this section, we show that there exists a Minimal Basis for R and that every element of R can be expressed uniquely as a linear combination of a Minimal Basis for R with coefficients in K_o .

Let R be a finite completely primary ring with maximal ideal \mathcal{M} . We know that \mathcal{M} is nilpotent and has index of nilpotence l for some $l \leq n$. Thus, \mathcal{M} contains a chain of ideals $\mathcal{M} \supseteq \mathcal{M}^2 \supseteq \ldots \supseteq \mathcal{M}^{l-1} \supseteq \mathcal{M}^l = (0)$ (see Section 2).

Now, consider any quotient $\mathcal{M}^i/\mathcal{M}^{i+1}$. This becomes a vector-space over the field R/\mathcal{M} on defining

$$(r+\mathcal{M})(m+\mathcal{M}^{i+1}) = r \cdot m + \mathcal{M}^{i+1}$$

for any $r \in R$, $m \in \mathcal{M}^i$.

Thus, $\mathcal{M}/\mathcal{M}^2$, $\mathcal{M}^2/\mathcal{M}^3$, ..., $\mathcal{M}^{l-1}/\mathcal{M}^l \cong \mathcal{M}^{l-1}$ may all be considered as R/\mathcal{M} -vector spaces, all of finite dimension.

Let c_i denote the dimension of the vector space $\mathcal{M}^{i-1}/\mathcal{M}^i$ over R/\mathcal{M} , for $i=2, 3, \ldots, l$, and let

$$x_{c_1+\ldots+c_{i-1}+1} + \mathcal{M}^i, x_{c_1+\ldots+c_{i-1}+2} + \mathcal{M}^i, \ldots, x_{c_1+\ldots+c_{i-1}+c_i} + \mathcal{M}^i$$

be a basis for $\mathcal{M}^{i-1}/\mathcal{M}^i$ for each $i=2,\ldots,l$, where $c_1=0$. Consider the set $\{x_1,\ldots,x_{c_2},x_{c_2+1},\ldots,x_{c_2+c_3+\ldots+c_l}\}$ of elements of \mathcal{M} . Note that, since

$$|\mathcal{M}| = |\mathcal{M}/\mathcal{M}^2| \cdot |\mathcal{M}^2/\mathcal{M}^3| \cdot \ldots \cdot |\mathcal{M}^{l-1}/\mathcal{M}^l|,$$

we have

$$p^{(n-1)r} = p^{rc_2} \cdot p^{rc_3} \cdot \ldots \cdot p^{rc_l} = p^{r(c_2 + \ldots + c_l)},$$

and therefore, $n-1=(c_2+\ldots+c_l)$. Thus, we can write this set of elements of \mathcal{M} as $\{x_1,x_2,\ldots,x_{n-1}\}$.

Suppose $0 \neq x \in \mathcal{M}$. Then $x + \mathcal{M}^2 \in \mathcal{M}/\mathcal{M}^2$, and therefore there are elements $\lambda_i + \mathcal{M}$ with $\lambda_i \in K_o$ such that

$$x + \mathcal{M}^2 = (\lambda_1 + \mathcal{M})(x_1 + \mathcal{M}^2) + \ldots + (\lambda_{c_2} + \mathcal{M})(x_{c_2} + \mathcal{M}^2) = \sum_{i=1}^{c_2} \lambda_i x_i + \mathcal{M}^2.$$

Hence,

$$x = \sum_{i=1}^{c_2} \lambda_i x_i + y$$
, where $y \in \mathcal{M}^2$.

But then, $y + \mathcal{M}^3 \in \mathcal{M}^2/\mathcal{M}^3$, and therefore, we can find elements $\lambda_j + \mathcal{M}$ with $\lambda_j \in K_o$ such that

$$y = \sum_{j=c_2+1}^{c_2+c_3} \lambda_j x_j + z, \text{ where } z \in \mathcal{M}^3.$$

C.J. Chikunji

Thus,

$$x = \sum_{i=1}^{c_2+c_3} \lambda_i x_i + z.$$

Continuing this process inductively, we find that there are elements $\lambda_i \in K_o$ such that

$$x = \sum_{i=1}^{n-1} \lambda_i x_i + w$$
, where $w \in \mathcal{M}^l = (0)$.

Hence,

$$x = \sum_{i=1}^{n-1} \lambda_i x_i,$$

and therefore the elements $x_1, x_2, \ldots, x_{n-1}$ may be said to "span" \mathcal{M} over K_o . Furthermore, every element of \mathcal{M} may be expressed uniquely as a "linear combination" of $x_1, x_2, \ldots, x_{n-1}$ with coefficients in K_o , for there are at most $(p^r)^{n-1}$ such combinations.

These results lead us to the following:

Definition Let R be any completely primary ring with maximal ideal \mathcal{M} of index of nilpotence l, and consider the R/\mathcal{M} -vector spaces

$$\mathcal{M}/\mathcal{M}^2$$
, $\mathcal{M}^2/\mathcal{M}^3$, ..., $\mathcal{M}^{l-1}/\mathcal{M}^l$.

Consider any set $\{x_1, x_2, \ldots, x_{n-1}\}$ of elements of \mathcal{M} such that $x_1 + \mathcal{M}^2$, $x_2 + \mathcal{M}^2$, ..., $x_{c_2} + \mathcal{M}^2$ is a basis for $\mathcal{M}/\mathcal{M}^2$, $x_{c_2+1} + \mathcal{M}^3$, ..., $x_{c_2+c_3} + \mathcal{M}^3$ is a basis for $\mathcal{M}^2/\mathcal{M}^3$, ..., and $x_{c_2+\ldots+c_{l-1}+1} + \mathcal{M}^l$, ..., $x_{n-1} + \mathcal{M}^l$ is a basis for $\mathcal{M}^{l-1}/\mathcal{M}^l$. Then, we shall call the set $\{x_1, x_2, \ldots, x_{n-1}\}$ a *Minimal Basis (M.B.)* of \mathcal{M} .

From what we have shown above, any M.B. of \mathcal{M} has the property that any element of \mathcal{M} may be expressed uniquely as a linear combination $\sum_{i=1}^{n-1} \lambda_i x_i$ with $\lambda_i \in K_o$.

Now, let $\psi: R \longrightarrow R/\mathcal{M}$ be the canonical homomorphism, and let \mathcal{P} be the set of primitive elements of R/\mathcal{M} . Define a set

$$S = \{x_o \in \psi^{-1}(\mathcal{P}) : o(x_o) = p^r - 1\},\$$

where $o(x_o)$ denotes the order of the element x_o .

Then, any $x_o \in S$ behaves exactly as the element b, and therefore, we can find an M.B. of \mathcal{M} "over" $\langle x_o \rangle \cup \{0\}$. In fact, the element x_o is interchangeable with b in all that has preceded.

Definition The set $\{x_0, x_1, x_2, \ldots, x_{n-1}\}$ will be called an M.B. of R if and only if $x_0 \in S$ and $\{x_1, x_2, \ldots, x_{n-1}\}$ is an M.B. of M.

Proposition 4.1 Let R be a finite completely primary ring. Then, every element of R can be expressed uniquely as a linear combination of the M.B. $\{x_0, x_1, x_2, \ldots, x_{n-1}\}$ with coefficients in $\langle x_0 \rangle \cup \{0\}$.

Proof Let $r \in \mathbb{R}$. Then, by Corollary 3.6, there exists $\lambda \in \langle x_o \rangle \cup \{0\}$, $m \in \mathcal{M}$, such that $r = \lambda + m$.

But since $\{x_1, x_2, \ldots, x_{n-1}\}$ is an M.B. of \mathcal{M} , we have that there exist $\lambda_i \in \langle x_o \rangle \cup \{0\}$ such that

$$m = \sum_{i=1}^{n-1} \lambda_i x_i.$$

Hence,

$$r = \lambda + \sum_{i=1}^{n-1} \lambda_i x_i = (\lambda x_o^{-1}) x_o + \sum_{i=1}^{n-1} \lambda_i x_i,$$

which is the required form.

The uniqueness of expression follows from the fact that there are at most $(p^r)^n$ linear combinations, and $|R| = p^{nr}$.

5 Some Module theory over finite completely primary rings

In this section, we will be concerned with collecting a number of results and constructions concerning modules over finite completely primary rings.

Let R be a finite completely primary ring of order p^{nr} , residue order p^r and characteristic p^k , with maximal ideal \mathcal{M} of index of nilpotence l. Let K_o and b be as in Proposition 2.1. Let $R_o = \mathbb{Z}_{p^k}[b]$ be a maximal Galois subring of R, $\mathcal{M}_o = pR_o = \mathcal{M} \cap R_o$, its maximal ideal and $R_o/\mathcal{M}_o \cong K$, where $K = R/\mathcal{M}$. Let M be an R-module. Then, we have the following:

Definitions

(i) A K_o -basis of M is a subset $\{m_1, m_2, ..., m_l\}$ of M such that every element of M is uniquely expressible as $\lambda_1 m_1 + ... + \lambda_l m_l, \lambda_i \in K_o$;

(ii) An R_o -basis of M is a subset $\{m_1, m_2, ..., m_h\}$ of M such that

$$M = R_o m_1 \oplus \ldots \oplus R_o m_h$$
.

We now state and prove the following:

Proposition 5.1 Let M be an R_o -module and $\{m_1, m_2, ..., m_h\} \in M$. Then, the following are equivalent:

(i) $\{m_1, m_2, ..., m_h\}$ is an R_o -basis of M;

(ii) the non-zero elements of $\{p^im_j : i=0, 1, ..., k-1; j=1, ..., h\}$ form a K_o -basis of M.

Proof

We first show that (i) implies (ii).

Notice that for every $\nu = 0, 1, ..., k-1$, the non-zero elements of

$$\mathcal{B}_{\nu} = \{ p^{\nu} m_j + p^{\nu+1} M : j = 1, ..., h \}$$

are linearly indépendent over K. For let

$$\sum_{j=1}^{h} (\lambda_j + \mathcal{M}_o)(p^{\nu} m_j + p^{\nu+1} M) = p^{\nu+1} M,$$

with $\lambda_j \in K_o$. Then,

$$\sum_{j=1}^{h} \lambda_j p^{\nu} m_j \in p^{\nu+1} M$$

and so,

$$\sum_{j=1}^{h} \lambda_{j} p^{\nu} m_{j} = p^{\nu+1} \sum_{j=1}^{h} r_{j} m_{j},$$

with $r_j \in R_o$, where $\sum_{j=1}^h r_j m_j = m$, for some $m \in M$. Hence,

$$\sum_{j=1}^{h} (\lambda_j - pr_j) p^{\nu} m_j = 0,$$

and since

$$M = R_o m_1 \oplus \ldots \oplus R_o m_h$$

$$(\lambda_j - pr_j)p^{\nu}m_j = 0$$
, for every $j = 1, ..., h$.

C.J. Chikunji

Now, if $\lambda_j \neq 0$, then $(\lambda_j - pr_j)$ is invertible in R_o and hence, $p^{\nu}m_j = 0$. But then $p^{\nu}m_j \neq 0$ implies $\lambda_j = 0$. Hence, the non-zero elements of \mathcal{B}_{ν} are linearly independent over K.

It is obvious that the set $C = \{p^i m_j : i = 0, 1, ..., k-1; j = 1, 2, ..., h\}$ generates M over K_o , since $M = R_o m_1 \oplus \oplus R_o m_h$

and $\{1, p, p^2, \ldots, p^{k-1}\}$ is a K_o -basis of R_o .

It remains to show that every element of M can be written uniquely as a K_o -linear combination of the non-zero elements of C. So, let

$$\sum_{j=1}^{h} \sum_{i=0}^{k-1} \lambda_{ij} p^{i} m_{j} = \sum_{j=1}^{h} \sum_{i=0}^{k-1} \mu_{ij} p^{i} m_{j},$$
(15)

 $\lambda_{ij}, \mu_{ij} \in K_o$. Then,

$$\sum_{j=1}^{h} (\lambda_{0j} + \mathcal{M}_o)(m_j + pM) = \sum_{j=1}^{h} (\mu_{0j} + \mathcal{M}_o)(m_j + pM).$$

Since \mathcal{B}_o is K-independent, we have

$$\lambda_{0j} + \mathcal{M}_o = \mu_{0j} + \mathcal{M}_o,$$

for every j=1, ..., h. Since $\lambda_{0j}, \mu_{0j} \in K_o$, by Remark 1.1, $\lambda_{0j} = \mu_{0j}$, for every j=1, ..., h. Now, (2) gives

$$\sum_{j=1}^{h} (\lambda_{1j} + \mathcal{M}_o)(pm_j + p^2M) = \sum_{j=1}^{h} (\mu_{1j} + \mathcal{M}_o)(pm_j + p^2M);$$

and since B_1 is K-independent, we have

$$\lambda_{1j} = \mu_{1j},$$

for every j = 1, ..., h. Continuing the process, we see that $\lambda_{ij} = \mu_{ij}$, for every i = 0, 1, ..., k-1 and every j = 1, ..., h and this establishes our claim that every element of M can be written uniquely as a K_o -linear combination of the non-zero elements of C. This establishes that (i) implies (ii).

We now show that (ii) implies (i).

Since $\{1, p, ..., p^{k-1}\}$ is a K_o -basis of R_o , for every $m \in M$, we have

$$m = \sum_{i=0}^{k-1} \sum_{j=1}^{h} \lambda_{ij} p^{i} m_{j} = \sum_{j=1}^{h} (\sum_{i=0}^{k-1} \lambda_{ij} p^{i}) m_{j},$$

with $\lambda_{ij} \in K_o$, $\sum_{i=0}^{k-1} \lambda_{ij} p^i \in R_o$; hence, $M = R_o m_1 + \dots + R_o m_h$.

To show the sum is direct, let $\sum_{j=1}^{h} r_j m_j = 0$, with $r_j \in R_o$. Then,

$$r_j = \sum_{i=0}^{k-1} \lambda_{ij} p^i,$$

and, hence,

$$\sum_{i=0}^{k-1} \sum_{j=1}^{h} \lambda_{ij} p^{i} m_{j} = 0,$$

with $\lambda_{ij} \in K_o$; which implies $\lambda_{ij} = 0$, for every i = 0, 1, ..., k-1 and every j = 1, ..., h; provided $p^i m_j \neq 0$. But then

$$\sum_{i=0}^{k-1} \lambda_{ij} p^i m_j = 0,$$

for every j = 1, ..., h.

Corollary 5.2 Let M be a finite R-module, where R is a finite completely primary ring, with maximal Galbis subring R_o . Then M has an R_o -basis (and hence, also a K_o -basis).

Proof Clearly, M is also a finite R_o -module and since R_o is commutative M can be considered as an R_o -bimodule. Then, by Corollary 3.3, M has an R_o basis (and by the previous Proposition, it has a K_o -basis).

Corollary 5.3 Any finite completely primary ring has a Ro-basis (and hence a Ko-basis).

We complete this section by proving that the maximal ideal \mathcal{M} of a completely primary ring R has a distinguished K_o -basis, considered as an R_o -submodule of R.

We first introduce some notation which will be convenient for this purpose.

Let $K = R/\mathcal{M}$ and let $\sigma \in Aut(K)$. Then σ is given by $\sigma(x) = x^{p^{\nu}}$ for some $\nu \in \{1, 2, ..., r\}$, and we can consider the function

$$\begin{array}{cccc} \theta: & K_o & \longrightarrow & K_o \\ & \lambda & \longmapsto & \lambda^{p^{\nu}} \end{array}$$

which defines an automorphism on R_o by

$$\sum \alpha_i b^i \longmapsto \sum \alpha_i b^{ip^{\nu}}.$$

We shall write λ^{σ} for $\lambda^{p^{\nu}}$ and $(\sum \alpha_i b^i)^{\sigma}$ for $\sum \alpha_i b^{ip^{\nu}}$.

Definition. Let M be an R_o -submodule of R, and let $\{m_1, ..., m_h\}$ be an R_o - or a K_o -basis of M. We say that $\{m_1, ..., m_h\}$ is distinguished if there exist $\sigma_1, ..., \sigma_h \in Aut(K)$ such that for i = 1, ..., h,

$$m_i b = b^{\sigma_i} m_i.$$

We now state the following proposition which extends the work of Raghavendran to all completely primary rings:

Proposition 5.4 Let R be a finite completely primary ring with maximal ideal M. Then, M has a distinguished K_o -basis.

Proof This follows directly from Corollary 3.3, since \mathcal{M} is, in a natural way, an R_o -bimodule.

References

- [1] C. J. Chikunji, On a Class of Finite Rings, Comm. Algebra, Vol. 27, No. 10 (1999), p.5049 5081.
- [2] E. W. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33 (1972), p.25 28.
- [3] R. Raghavendran, Finite associative rings, Compositio Math. 21, Fasc. 2 (1969), p.195 229.
- [4] R. S. Wilson, On the structure of finite rings, Compositio Math. 26, Fasc. 1 (1973), p. 79 93.
- [5] B. R. Wirt, Finite non-commutative Local rings, Ph.D. Thesis, University of Oklahoma (1972).