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1. Introduction

Among asset market models, “the grandfather of them all, the celebrated Capital Asset Pricing Model”
(quoting Varian’s textbook [1, p. 371]) has become ubiquitous over its five decades. For a brief
historical account of its (pre-) history from Treynor, Sharpe, Lintner and Mossin, see Sullivan [2].
There is a vast empirical literature wherein its performance has been tested and criticized, the
tests and test statistics have been scrutinized, and its mere testability has been discussed over;
empirical performance is not the topic of this paper, but see, e.g., Jagannathan and McGrattan [3]
or Johnstone [4].

The CAPM has shown up in several variants, but in the common textbook version, it will enjoy
inter alia the following properties, which are key points to this paper:

e The possible combinations of mean and dispersion (as measured by standard deviation)
attainable in portfolios with zero position in the risk-free opportunity, form a strictly convex
set (the Markowitz bullet) in the (stdev,mean) plane.

o Allowing to use the risk-free opportunity as well, the mean—variance efficient returns are
characterized by an increasing line from the risk-free return on the second axis, tangent to the
Markowitz bullet at a single unique point (the market portfolio: the aggregate risky portfolio
must be a scaling of this, as every agent’s risky portfolio is).

o Efficiency of the market portfolio determines prices up to one degree of freedom — the pricing
of the market portfolio itself, reflecting the market price of risk.
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o Once the market portfolio’s return is given, other prices can be characterized in terms of the
coefficient beta, the ratio between the opportunity’s expected return in excess of risk-free, and
the corresponding one of the market portfolio. In the standard version, the beta is computed
as the opportunity’s covariance with the market, divided by the market portfolio’s variance.
Equivalently, it is the relative change in standard deviation transferring one (infinitesimal)
monetary unit from the market portfolio to the opportunity.

Key to the CAPM is the monetary two-fund separation theorem, a key result in modern portfolio
theory since Tobin [5]: the property that all agents could be satisfied by the risk-free opportunity and
one single risky portfolio (namely, the market portfolio in CAPM) and forming a linear combination
like above. Most prominently, the property holds when mean—variance trade-off is well-justified (see
Johnstone and Lindley [6] and the references therein for historical accounts); that is, the elliptical
distributions class (Owen and Rabinovitch [7] and Chamberlain [8]); let us therfore refer to this
classical framework as elliptical CAPM, although, arguably, the multinormal special case is the more
common assumption. Let us briefly discuss some extensions which are relevant to this paper:

o The risky returns vector could be shifted symmetric stable, if integrable. This is a consequence
of the monetary two-fund separation property, for which early cases were given by Fama [9] and
Samuelson [10]; Fama [11] refers to an earlier unpublished 1967 note of his on the stable CAPM.
Further CAPMs for (shifted) symmetric stable returns are given by Belkacem et al. [12] and
Gamrowski and Rachev [13], and indeed, symmetric stability can be generalized to so-called
pseudo-isotropic distributions (this author [14]), weakening integrability.

o Elliptical — and stable/pseudo-isotropic — CAPM admits the “no short sale” restriction
on the risky investment opportunities (with the obvious reservation that only investment
opportunities wich are taken on, will be completely priced, while we only know about those
left untouched that they are too expensive to justify its return). Ross [15] points out that all that
is needed, is the monetary two-fund separation property.

o If there is no risk-free opportunity, the minimum-variance portfolio can substitute for the risk-free
in the elliptical portfolio separtion theorem. Thus, elliptical CAPM can be established without
any risk-free opportunity, the so-called Black [16] zero-beta CAPM.

o However, the absence of risk-free opportunity can not be combined with the absence of short
sale opportunities ([15]). And neither can it be combined with shifted symmetric risky returns,
except very special cases; Fama [11, section VLB] claims the risk-free opportunity «greatly
simplifies determination of the efficient set of portfolios», and indeed it turns out ([14, Theorem
11]) - that without the risk-free opportunity, the efficient portfolios no longer form a convex set.

On the other hand, the absence of short sale opens new possibilities: much like how the
restriction to elliptical (or shifted pseudo-isotropic) distributions restricts the attainable portfolio
returns distributions, so does the restriction to nonnegative investments. For example, if all returns
distributions are iid, stable and integrable, then the convex combinations will only differ in their scale
parameter (which generalizes standard deviation). Except under (shifted) symmetry, this property
breaks down once negative coefficients are allowed. The returns distributions considered in this
paper will not admit the CAPM over unrestricted portfolios. For the spectrally negative stable
class, the two-fund monetary separation properties are proven in [17, Section 5] (showing that
continuous-time properties are inherited from a single-period model); this paper gives conditions
for a CAPM with, in particular, a beta for the equilibrium prices, the uniqueness of such one, and the
covariation measure of comovement is extended to the distribution class.

In addition to the spectrally negative stable class, the paper introduces an apparently new
class of multivariate distributions for which the CAPM construction goes through, and proposes a
generalization of covariation. As those distributions need not be infinitely divisible, the single period
model offers more generality than a continuous-time model.
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1.1. Content of the paper, and notation

The paper will give the distributional theory in section 2, and in section 3 establish the CAPM
in a fairly stylized way, as the outline should be well known once the building blocks are defined
properly. Therefore, the relevant measures of comovement — and thus the betas — will be defined and
discussed with the distributions in section 2. That section will start with a general discussion, and
then spend one subsection for each distribution class in question, where subsection 2.3 will present
the novel class. After section 3, section 4 will discuss and conclude.

Let us fix some notation and terminology. We work in R for arbitrary finite d > 2, and denote
by R% resp. R? the nonnegative resp. nonpositive closed orthants except allowing for the occational
abuse of notation by excluding the origin whenever that point is not interesting. Other sets will be
denoted in blackboard bold as well. S is the unit sphere in R?. I is either a pointed cone or R?. U is
always a subset of the unit simplex, usually intersected with ID. Vectors are denoted in boldface, and
are columns by default, unless indicated by superscript « | » (transposition) or given as a gradient. 1is
the vector of ones, and 0 the null vector. The generic free variable is ¢ or (vector) ¢. We apply the signed
power notation <P~ := |¢|P sign(¢) even to vectors, element-wise, e.g &~ = ( 1<p>, . ..,Q’;p>)T
(an invertible operation!) Matrices are Greek uppercase slanted bolds (considering the identity I
a capital Iota), using non-bold for order 1 x 1. Random quantities are denoted by upright Latin
letters (boldfaced if vector-valued). Minuscles (Greek/Latin, vectors if bold) are either non-random
or choice variables. The ~ symbol denotes equal probability law, and Re denotes real part.

2. Distribution classes

Before discussing the distribution classes themselves, let us make a general comment on the
key property, namely that the projections &' X belong to a location—scale class, subject to a suitable
constraint on ¢. In the history of portfolio theory, this property has been the subject to several
mistaken conjectures, most famously the conjecture of Tobin [5] that any two-parameter family would
hold. Cass and Stiglitz [18] briefly discussed the property that linear combinations of independent
copies of the multivariate distribution be in the same class, which is not directly the same as linear
combinations of the coordinates — unless the coordinates are independent, and it is perhaps not so well
known that Cass and Stiglitz indeed made that reservation to their argument. The pseudo-isotropic
class, subsection 2.2, generalizes symmetric stability to the property that all projections belong to the
same type up to scaling. However, when restricting projections to a cone { € D, the symmetry
assumption on the stables can be weakened (subsection 2.1). The class introduced in subsection 2.3
makes the same generalization to this wider class of stables, as pseudo-isotropics make to symmetric
stables. In the course, we also generalize certain tools — the covariation measure for co-movement,
and the betas for the financial application — from the symmetric stable class.

2.1. Multivariate stable distributions

This subsection largely follows the reference work of Samorodnitsky and Taqqu [19], and several
facts will be given without reference.

The stable distributions are precisely the ones attainable through the generalized central limit
theorem, and the common defining property of a stable random vector X, is as follows: For two
independent copies X; and X; of X, and any two positive non-random numbers a; and 4y, there exist
an a > 0 and a vector d, both non-random, such that

mX1 +a Xy ~aX+d.

This is sometimes referred to as the sum-stable property. As it turns out, there is some parameter
p € (0,2], called the index of stability, for which a¥ = af + ag . Commonly, the index is denoted
«, but we shall avoid using the first two Greek letters, as they have different meanings in a CAPM
context. Also, key to some results are that certain of the properties work out when we replace the
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index of stability by a different p < 2, and so we shall use g for the index of stability when needed to
distinguish — or when two indices are needed.

We shall have more use for the characteristic function; of many representations (see Nolan [20]),
we choose the following: There exists a finite spectral measure » on the unit sphere S C R? such that

Elexp(i8' X)] = exp (iGTy — /S 10" s|P 1 +icop(6Ts)]%(ds))
where @, (&) = tan(—p7/2)sign(g) for p # 1, and @;(¢) = 2 sign(¢) In|¢].

)

X — p is symmetric if s is symmetric (“iff” for p < 2, when also s is unique). While a multinormal
random variable can be written as matrix-transformed iids (plus a constant vector), the non-Gaussian
stable laws allow a much richer dependence structures than that; for p < 2, only finitely supported s
allow this kind of representation (where the iid case requires the support to be the standard Euclidean
unit vectors). For the applications of this paper, one can note that this was not well understood in the
early days of modern portfolio theory, where one often made the assumption of matrix-transformed
independent coordinates (e.g., the cited works of Fama); on the other hand, there is a rich literature
focusing on the elliptical special case, where s is a matrix-transformation of the uniform over S.

The property that makes the portfolio theory work through for a certain subclass of even
non-elliptical stable distributions, is the behaviour of linear projections, i.e., linear combinations &' X.
Each such is univariate stable, with distribution fully determined by the following triplet — note the
1p=gyin the location — which can be identified by gathering terms in the exponent of (1):

scale: 0 = (/ |§Ts|p%(ds))1/p )
skewness: = (rgp / |&Ts|P sign(&'s) »(ds) € [-1,1] 3)
location: iz = Eu— Lip—1y - %/'g’—rs -In ‘g—rs’ »(ds). 4)

The skewness parameter is often denoted with the letter B; again, this clashes with CAPM notation,
the beta being one main ingredient in the pricing. Note that this parametrization of scale is a factor
of 2 off the standard deviation for the Gaussian — and the parametrizations of skewness have been
subject to even more confusion in the literature, dubbed by Hall [21] as a “comedy of errors”.

One subclass frequently used in financial modelling is the shifted symmetric class, where s is
antipodally symmetric. This paper shall however have a particular focus on the most asymmetric
possible:

Definition 1. A non-Gaussian multivariate stable random variable is spectrally negative, resp. spectrally
positive if supp 2 C RY, resp. C R%.

The Gaussians could be included (without mention) whenever suitable. The modelling
motivation for focusing on the spectrally negatives, is twofold. First, it is potentially appealing for the
modelling of insurance and loans, as the corresponding Lévy process has no positive jumps (“no news
is good news”, appropriate for a situation where income flows continuously but losses are discrete
events). Second, if 1o short sale is allowed, all the positive projections {¢' X; & € R} will have the
same skewness, and we are down to a location—scale distribution family. More generally, constant
skewness holds on the polar cone {f € R% ¢'s < 0 »-as.} of supp », and also (with opposite
skewness) on the dual cone (where &'s > 0). We use the letter ) (mnemonic for “dual”, in order not
to cause confusion with a common notation for probability measure) although the polar cone will be
the main focus; for simplicity we state the next lemma for the polar cone only.
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Lemma 1. On the restriction of & and &* to the polar cone D of supp s, the following hold true:

(a). "X has skewness equal to —1.

(b). The upper tail of &' X is light, in that E[egTX] converges, each ¢ € D; if the index of stability is p < 1,
Z"X is supported by the half-line (—oo,ug]. Unless X is Gaussian, the lower tail is heavy, in that
max{0, —&" X} has finite moments only up to (but not including) the index of stability.

(c). The pair ("X, &TX) is bivariate stable and spectrally negative.

d). If ga) maximizes location subject to constraining to the polar cone intersected with the o-unit sphere

=1, then we have the equivalence in law
* \T T
(0z8() X~ & X+ [z, — weso o ©®)
so that the random variable (0z& 2‘1) )T X first-order stochastically dominates the random variable &' X.

Lemma 1 follows easily from the representation of the chf, see [19], though we give the
calculations of part (d) for the 1-stable case:

Mo _gr, 20 [8s) 80 [&sax % - 2
o= = || [ s %}_yg/aﬁnmaﬁ ©)

as [ETsdx/ 0z equals the skewness, which is —1. Therefore o, — Mg = Oghgr, — Oghe/o for the
1-stable case as well. A consequence of part (d) to economic theory, is that there is no agent which
maximizes expected nondecreasing utility, who will strictly prefer &' X to (078 2‘1) )" X. For the market
model in the next section, this property leads to two-fund monetary separation for the market under
restriction to D ([17, Theorem 5.1]) , the essential property for the CAPM market line.

Remark 1 (Sub-stability). Consider the product XH where X is p-stable and located at zero, and H is an
independent positive random variable such that the pth power H? is p-stable with ¢ < 1, located at zero and,
necessarily, with skewness of +1; that is, — In E[e!®™'] = |¢9|9[1 — itan(p7mr/2)signd]. If pp #1 # p <
2, then XH is stable with index pg ([19, subsection 1.3 and Theorem 2.1.5]). Furthermore, XH is symmetric
iff X is, but spectral negativity is only inherited the same way for p < 1: If X is spectrally negative, p > 1 and
(S R‘i, then &' X has skewness of —1 and thus a light upper tail, but & XH has both tails equally heavy, as

(Hardin [22, p. 4]) its skewness is —% € (—1,0).

Nevertheless the first-order stochastic dominance (5) continues to hold if X is scaled with some
nonnegative H (not necessarily a power of a stable) — with the same ¢ Eﬁl) chosen over the same unit
sphere. This motivates that we consider geometric properties that do not directly follow from stability.

2.2. The essentials of pseudo-isotropic random vectors

The pseudo-isotropic distributions (cf. e.g. Jasiulis and Misiewicz [23, Definition 3] or Misiewicz
[24] for a reference work) are those multivariate distributions possible in the Eaton [25] problem of
finding d-dimensional versions of univariate distributions:

Definition 2. A symmetric distribution in R? is called pseudo-isotropic if for some order 1
positive-homogeneous standard ¢ : RY — [0, 00) and some (complex) function g, the characteristic function
can be represented by q0 — E[ei‘l"TX] = e=8Ual<®)), It is called pure if no marginal X; has any point mass at
zero.

Thus, for pure pseudo-isotropic measures, all projections are of the same type: fixing any
marginal X;, then Z'X ~ ¢(&)X; holds for some order one positive homogeneous ¢ > 0, called
the standard of the distribution. Pseudo-isotropy generalizes ellipticity located at zero (then, ¢? is
a quadratic form) and symmetric stability, and in the same way as the Gaussian admits unique
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properties among the stables, ellipticity admits properties that are unique among pseudo-isotropics.
Pseudo-isotropic distributions can be formed from stable distributions by multiplying by an arbitrary
independent univariate variable (without changing ¢). This underlies the next definition’s focus on
the geometry of the ¢ unit ball rather than, e.g., tail heaviness, cf. also the end of Remark 1. One
should note, though, that there are other pseudo-isotropic distributions, see Gneiting [26].

The next definition is a short-form adaptation of a central property studied for pseudo-isotropic
distributions, cf. e.g. Koldobsky [27], [28] and coauthors [29] — wherein the reader can also find why
the restriction to p < 2 is no loss of generality for d > 3.

Definition 3. Let X be pseudo-isotropic. Fix p € [0,2]. Suppose that there exists some finite measure > =
supported by the unit sphere, and such that ¢ admits the so-called Blaschke—Lévy representation

[ @) pe

c=¢p(d) = - )
exp/S In|Aog's| »50(ds),  p =0, (some constant Ay > 0).

If so, we say that ¢, and X and its distribution, embed in L¥ and that the p-spectral measure s, exists. Also,

we say that the representation ¢, exists, hence the subscript. (Other than existence-or-not, ¢ does not depend

onp.)

It is a fact that embedding in L” implies embedding for all indices € [0,p), and that all
pseudo-isotropic random variables embed in L° (the Lisitsky [30] conjecture, settled by Koldobsky
[28, Corollorary 1]) with in the pure case, a uniquely given A computed explicitly in [29, p. 3—4]. The
case p = 2 —ellipticity —is the only where the dependence structure can be expressed through a matrix
transformation standardization (the positive-definite square root of [ss' ds). The non-elliptical
pseudo-isotropic distributions are heavy-tailed: as is well known, non-embedability in L? (p € (0,2])
implies infinite pth order moment. The interesting case for our purposes is if embedding holds for
p > 1, in which case ¢ is strictly quasiconvex and its unit ball a strictly convex set with smooth
sphere; by bounded convergence, the gradient V(&) = [(&'s)<P~1>s"d is continuous outside
the origin. Portfolio theory for shifted pseudo-isotropic distributions, and consequences of their
geometric properties, are given in [14]. The next subsection will generalize to a class unifying (shifted)
pseudo-isotropic and spectrally negative random vectors.

2.3. The class ¥y (g) of distributions which satisfy the pseudo-isotropy definition restricted to a cone D

The symmetric stable distributions are purely pseudo-isotropic: the distribution of a projection
& X depends only on ¢(§). It is easy to see that on the restriction to the polar cone, or equivalently
the restriction to the dual cone, of the support of the spectral measure, the same holds without
symmetry, provided that # = 0; the restriction eliminates the third skeweness parameter. This
motivates the unified concept given in Definition 4 below, where the use of dual or polar cone is
of course interchangeable.

Definition 4 (The class ¥Yp(¢)). Let D be the dual cone of some subset of R? and let ¢ be some order 1
homogeneous function ¢ : D — [0,00). Define ¥p(g) to be the class of distributions whose characteristic
function restricted to D admits the following representation

R C st E[0 X =e 86O  oalid forall 0 € D. ®)

The random vector X with this distribution is also said to be € ¥y (g). For non-random w, we then call the
random vector u + X shifted ¥p (). In either case, we call g its standard. We say that X and its distribution
are € Yy (resp. shifted ¥ if there exists some ¢ such that they are € Y (g) (resp. shifted ¥p(c)).
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A random variable which is shifted Y (¢), and its distribution, and the associated standard ¢, are said
to embed in LP if there exists a finite p-spectral measure s, supported by the unit sphere, such that the
representation (7) holds true on .

The notation ¥ (¢) using the Greek letter ¥ is a mnemonic for pseudo-isotropic on D with standard
¢, but the author is somewhat reluctant to trying to coin a name for the distribution class. The
extension given in Definition 4 appears novel to the author: there is a related concept (called “positive
isotropic vectors” by Arias and Koldobsky [31]) where D = R% (non-shifted) and imposing the
additional condition that X also a.s. takes values only in RY - that class includes the spectrally positive
stables with index < 1 and location at zero. A negative result is reproduced in part (c) in the next
proposition; that negative result is no surprise given the behaviour for the stable case (Remark 1).

Proposition 1. Assume the random vector X can not be represented as = cX (where c is a non-random vector
and the random variable X is univariate), and that none of its marginals is a Dirac point mass. Then the
following hold true.

(a). If X is shifted Y1 (g) with ¢ being strictly quasiconvex, then

gT <p-1>_T1
Ve@ = [ (s s" sy(ds ©)
¢(¢) S ( H6) ) p(ds)
holds in the subgradient sense, and is bounded on the interior of D. If the g-unit sphere is smooth (which

in particular holds under embedding in LP for some p > 1), then V¢ is also continuous.

(b). Let X € ¥p(g), and H be independent univariate and non-Dirac. Then XH € Y¥p(g) as well. In
particular, XH embeds in LP if X does.

(c). A spectrally positive or spectrally negative stable vector, is shifted Ygn , and embeds in LS where o is its
index of stability. However, if p < 1, then for every p > 1, it does not embed in LF, nor does it have
finite pth moment.

(d). Let X —p € ¥n(c). If 51y € argmaxgeD’_g(g)zlgTﬂ, then we have the equivalence in law

G(%]Tu > g'X (10)

so that the random variable (g(g)gfl))Tx first-order stochastically dominates the random variable

(6(@)E) X~ ETX + (&) [ -

&X, this generalizing Lemma 1 part (d).

Just like in Lemma 1, the last part (d) shall be used to establish two-fund monetary separation
under restriction to ID in the next section.

Proof. Part (d)is evident. The nontrivial last statement of part (c) is given in Arias and Koldobsky [31,
Corollaries 2.4, 2.5], while the first is clear from Lemma 1. For part (b), write the characteristic function
as

E[E[cos(|H|0" X)|H] + isign(H)E[sin(|H|6" X)|H]]

where both the conditional inner expectations depend 6 only through ¢(|H|6) = |H|¢(8). Part (a)
follows by bounded convergence and homogeneity of degree zero of Vg. 0O

Remark 2. From part (a), we can extend directional derivatives in directions into D even on the boundary
except at the origin: let § and & non-null such that both & and & + & both € D, and define V¢(&)d by taking
limits. We shall use the notation V¢ (&) this way to refer to the restriction to D\ {0}, disregarding any concerns
across the boundary and out of ID.

For an example of how the orthant restriction affects the differentiability conditions, let X; be iid 1-stable
with skewness = —1, and let X be independent 1-stable and elliptic, all located at zero. Consider X = X+
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(Xy,...,Xy)". Then X € Ya , (though not spectrally negativel), ¢ is strictly convex, and it is C! on the
+

orthant (outside the origin). However, the function & v~ o has nondifferentiabilities where one variable

changes sign, so the C! property is truly an effect of the orthant restriction.

We can now define a functional which will be denoted B; it will be precisely the beta of the CAPM
when we insert the so-called market portfolio for the reference vector ¢*. That motivates the restriction
to the unit simplex (which will have the interpretation of being the set possible allocation weights in
risky portfolios) in the following.

Definition 5. Let X € Yp(g), with D such that U = {¢ € D; 1'& = 1} is nonempty. Suppose that
¢ € CY(U) and convex on U; in particular this holds under embedding in LV for some p > 1 (for which,

in turn, integrable spectrally negative stability is sufficient). Fix some " interior relative to U. Define B =
ﬁVg({;’*) on U, and consider it a linear functional on U: the beta of a vector § € U is defined as

gE= g(lg*)v(;(g*)g so, in particular,  B; = g(fl,‘*) - aagl((',‘*) (11)

Bi is then the beta of investment opportunity number i. Furthermore, extend through continuity the
definition to &* on the boundary under the assumption that {* + e € D for all sufficiently small € > 0.

If one prefers, one can extend to the entire {I); 1'¢ > 0} by homogeneity of degree zero,
equating with B7&/1"&, as justified above. Note that under embedding in L?, we can write f =

6(&7) 7 J5s(Z7Ts) P17 sp(ds).

Remark 3. Remark first that the betas are nonnegative when also & € ; then, all &' s and & "' s have the same
sign. In a pure-jump Lévy process framework (which assumes infinite divisibility, which holds for the stables),
the nonnegativity corresponds to the fact that “if all jumps are negative (or all positive), then all simultaneous
jumps go in the same direction”. However, if p = 2 (where the skewness parameter does not enter into the stable
case,) this translates all pairs being nonnegatively correlated. When can a coordinate i of beta vanish? Then
stp-a.5. we must have have 0 = (e;' s)(s' &) > |s;|?¢}, so that & = 0 if the ith marginal is non-degenerate.
At least in the stable case, it easily follows that even if & = 0, the variables &' X and X; must in fact be
independent.

Let us make a few more remarks about the interior vs. boundary of the unit simplex. In the interior, the
calculations would make sense under a local C! assumption. However, as we are to apply this to a CAPM,
it will not make sense unless the Markowitz bullet is a convex set. If for example X has iid coordinates and
an index of stability less than one, we have a “negative diversification effect” and formal calculations may in
a certain sense lead to the worst-possible choices with the optimal being non-diversification. In the case of iid
1-stables, we do have convexity of the set, but a piecewise-linear unit sphere, a linear programming problem and
then also a corner solution. Embedding in LP for p > 1 is however sufficient to ensure that the problem is well
behaved.

2.4. The covariation measure of association

The beta is in the elliptical CAPM a covariance-to-variance ratio, and thus defined in terms
of a comovement measure. We have seen from the technical side that the beta, if required to be
unique, is technically tightly connected to continuous differentiability of the g, for which the existence
of moments above order one is but a sufficient condition. This motivates the generalization of a
comovement measure commonly applied for symmetric integrable stable distributions only, namely
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the so-called covariation. Samorodnitsky and Taqqu [19, section 2.7] gives two equivalent definitions
for this measure of association for bivariate stable vectors, through the two common values

1 de“ (&, &)

12
T R 12)

/Ssls;@*1> dse(sy,s) =
where p is the index of stability, commonly (as in [19]) assumed > 1. However, g > 1 can be replaced
by the weaker condition that ¢ is C! outside the origin. In our case, it even suffices that the random
variable embeds in L? for some p > 1 in the sense of Definition 4: in that case, %Vgp =¢¥ Vg, and
V¢ we have an expression for: Under the assumption of embedding in L? for p > 1, then both sides
of (12) are well-defined as long as ¢(0,1) > 0, and equal

d -

G017 12 (0,1) = 0,177 [ 153" p(ds). (13)
déy S

We could take this as an extended definition for the case where a p-stable embeds for p > 1, but it

depends directly on the random variable being stable. The following suggested definition does not.

Definition 6 (suggested). Suppose X € ¥p(¢), with V¢ bounded and continuous on the unit simplex
(which, in particular, holds under embedding in LP for p > 1). Fix a continuous increasing function h :
[0,00) — [0, 00) with h(0) = K (0) = 0. Then for ¢* € D and & such that * + e € D for all sufficiently
small € > 0, and non-random a and a*, define the h-covariation of a + CTX on a* + @’*TX as

h(g(&"))

[a+8"X, a" +&7X], = oy Ve@E though =01if¢(Z") =0. (14)

The condition #(0) = h'(0) = 0 ensures that the h-covariation tends to zero with ¢(¢*). With
characteristic function e~8(¢(¢)), one can in particular suggest i = Re g or h = Re g¢/Re g(1) or h(c) =
Re (g(0)/g(1)), provided 1’ (0) = 0 holds. In that case, it reduces to the covariation as defined in [19]
on the common domain:

Lemma 2. Let X be stable with index > 1 and either symmetric (with D = R?) or spectrally negative (with
D = R%). For h(c) = o*, then formula (14) agrees with (13).

The lemma does make use of the particular form of the stable characteristic function. However,
the h function simply vanishes when we take ratios and calculate betas:

Lemma 3. We have

[E7X, &TX] _ Ve(@) _ Ve(&)E
(677X, &TX] Ve(@)g 6(@)

If H is univariate, independent of X and not a.s. zero, then B is the same for XH as for X.
Furthermore, assume D C an orthant and that & € D. Then BT > 0.

=p'z (15)

Proof. Positivity is obvious when also ¢ € . By Proposition 1 part (b), ¢ does not depend on H. O

The usual caveats concerning covariation do still apply, of course. The covariation of X; on Xp
is usually not the same as of Xy on Xj; sufficient for equality is embedding in L? (i.e., ellipticity) or
independence (where for stables, we do not have embedding for any p above the index of stability).
Furthermore, covariation is additive in the first variable, but commonly not in the second.

There is nothing deep about replacing the commonly taken assumptions of integrability and
symmetricity by a mere “as long as well-defined”; the question is rather whether the extension
leads to anything useful. Going beyond integrability is nothing novel for elliptical distributions, and
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embeddability is the sensible geometric sufficient condition that generalizes. Possibly less obvious is
how to make sense of the extension to non-symmetric vectors. Here, the betas show that the extension
beyond symmetric variables does have an interpretation, as long as one stays within I (or within —D),
where the projections’ distributions form a location—scale family.

3. The Capital Asset Pricing Model

An agent participating in the market to be given below, will be identified with an initial
nonnegative wealth y and a preference ordering consistent with first-order stochastic dominance (that
is, we do not assume risk aversion). The preferences themselves will be suppressed in the exposition,
as the distributional assumptions will admit two-fund monetary separation, ensuring that all agents
choose the same same risky portfolio throughout this section.

The agents face a single period investment decision of allocating wealth y between ¢ in d €
N «risky» investment opportunities, and the remaining y — 1" & in a numéraire that returns Ry per
monetary unit invested, called the risk-free return. We split out the numéraire return to write the risky
returns vector as R¢1 + pHy + ZH for some non-random location parameter p, deliberately using the
same notation as the location of a stable vector. Our model is then the portfolio return

wRy + &' (uHo + ZH) (16)

where we assume no short sale, i.e., § € D := R‘i, but — as of now — no other restrictions on §. We
could have used a different cone I, but this is the most interesting among the constrained case, and
it is general up to a suitable linear transformation. In order to eliminate arbitrage opportunities and
degeneracies, assume that

some y;is > 0; &' (uHp + ZH) is not a.s. nonnegative for any & € D\ {0}. (17)

although Lemma 4 can do with weaker assumptions.

The presence of R¢, Hp and H makes room for more general distributions - in particular, H could
take both signs — but also helps to illustrate why the index of stability is secondary to the geometric
properties of the ¢ (quasi-) norm:

Lemma 4. The assumptions that
Ry is independent of everything else, and so is (Ho, H); and, Hy > O a.s. (18)

grant the following implication: If &' X ~ & X and (& — &)"pu > 0, then the return using & first-order
stochastically dominates the return using ¢.

This illustrates why the simplification of taking those three variables to be constant, is as good
as without loss of generality; for the more general case, one can easily copy the argument and note
what degeneracies one must assume away. We shall therefore make the simplifying assumption that

Ho=H =1, so thatthe excess returns vectoris X =p +Z; and, Ry =0. (19)

(understanding, if referring to Section 2.1, that we keep the roles from that section; in particular,
concerning the role of the shift ). The key distributional assumptions on the excess returns is then
that Z € TRi .

Under these assumptions, two-fund monetary separation easily follows from Lemma 4 and the
argument of Lemma 1 part (d). Furthermore, strict convexity of the unit ball yields uniqueness:

Lemma 5. Assume that (17), (18) and — for simplicity only — (19) hold true. Suppose Z € Y4 (g) with the
+
g-unit ball being a strictly convex set. Then:
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(a). argmaxg(g)zlg‘,Tﬂ =: §{y) is unique. Then no agent will strictly prefer using & to using ¢(£)§ y, and
unless the two are equal, some agents will strictly prefer to use the latter.
(b). The Markowitz bullet {(&" u,¢(€)); & € E} is a strictly convex set.

The convexity follows by repeating the argument of Lemma 1 to distributions € Yp; the
convexity of the Markowitz bullet follows by noting that the problem of minimizing scale subject
to excess return (and to 1" & = 1), is a convex problem with convex value function.

The pricing in the Capital Asset Pricing Model can be derived under the assumption of trade-off
between excess return (&', desired) against some dispersion functional ¢ = ¢(&) (which will be
a scalar multiple of scale in the setting of Lemma 1, when the trade-off is in fact justified). From
this on, the arguments can be copied from a text-book with minor modifications; we mention that
the common approach assumes risk aversion, while this exposition sticks to merely a preference of
more to less (first-order stochastic dominance). Still, we merely sketch the derivation: Every agent
holds the same (up to scaling) location-dispersion-efficient risky portfolio, which has to be the market
portfolio. Let us disregard those investment opportunities which are not undertaken; they will be in
zero demand because the price is higher than implied by the pricing formula. Starting with *, some
non-null scaling of the market portfolio, an agent can consider to buy in addition a (sufficiently small)
vector ¢, and scale up or down the exposure in * as to maintain total level of dispersion. Define thus
the function b implicitly by ¢(e + (1 — b(e)/g(&"))&*) = ¢(&*). Implicitly differenting wrt. & and
inserting for € = 0 yields Vb(0) = V¢(¢"). By the assumed efficiency, ¢ = 0 must maximize location
given dispersion, yielding the formal first-order condition p" = (u' & /¢(&*))Vb(0) = Z’ (g) Vg (gY).
This determines the excess returns (u) as a vector  scaled by the excess return on the market portfolio:
the individual investment opportunities are priced according to their marginal relative contribution

B' = ﬁVg( ") - to the risk of the market portfolio. The market portfolio is commonly expressed

&)
in weights, accommodated by scaling (necessitating that it is not a free good, which is uncontroversial

for the application).
We summarize, noting that the embedding condition is sufficient to justify the use of a first-order
condition:

Proposition 2 (CAPM for spectrally negative opportunities). Assume that (17), (18) and — for simplicity
only — (19) hold true. Suppose Z € TR‘i () with ¢ being convex and C! with bounded derivative on the unit
simplex (this is stronger than all parts of Lemma 5, but in particular, it holds under embedding in LP for some
p>1).

Then all investment opportunities in strictly positive demand are priced so that their excess returns vector
u satisfies p' = Z (Tg:) Vg(&"), for the unique-up-to-scaling efficient portfolio ¢*. This formula also upper
bounds the return (lower bounds the price) for investment opportunities in zero demand.

Assuming furthermore that & is not a free good (1T&* # 0), we can without loss scale it down to the
market portfolio of weights of risky opportunities (so that 1" & = 1); the betas of the investment opportunities

in positive demand, are then given by formula (11) of Definition 5 and are all strictly positive if D = R

The latter strict positivity holds by positive demand, i.e., ¢; > 0, and arguing as Lemma 3.
Once &* is scaled to unity price, ' &* translates into Ry, + R £ in CAPM lingo. The result also justifies
our extensions of covariation, as B; of an opportunity i in positive demand, is its covariation on
the market, divided by the market’s covariation on itself, like in the known integrable (shifted)
symmetric-stable framework.

Among further properties known from elliptial CAPM, is the notion that in a well-diversified
market, one will only get paid to take on systematic risk. (Of course, the term “risk” here means
dispersion, having translated zero location, so it is not to say that one does not get paid for expected
losses.) Suppose opportunity number i contributes to the spectral measure by a point mass at e;,
but apart from this point mass, the s; # 0 subset has zero measure — both for X; as well as any
other marginal. As long as opportunity number i is of negligible weight in the market portfolio, the
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point mass at e; makes no contribution to the beta. This reservation is of course substantial even
for the elliptical CAPM, as a non-infinitesimal increment changes the market portfolio; the apparent
difference for p < 2 is that the infinitesimality reservation enters already when the beta is defined,
rather than when it is applied and interpreted.

Not all properties carry over nicely though. In elliptical portfolio theory, two-fund separation
carries over even to the case without a risk-free opportunity being accessible, leading to Black’s
so-called zero-beta CAPM. There is no such two-fund separation result in the non-elliptical symmetric
case with unconstrained portfolios ([14, Theorem 11]), not even on the positive orthant, and thus none
in the case of this paper. For the same reason, we can not hope for a partially hedgeable non-market
income to be hedged by a single fund.

4. A brief discussion

The foundational portfolio theory is probabilistic in nature, and does largely ignore objectionable
properties like violation of limited liability for the Gaussian — and for the stable distributions as well,
except the positive ones of infinite positive mean. On the other hand, there is an extensive literature
on the empirical fit (or empirical testability!) of the CAPM. We shall not enter the latter discussion.
Rather, we shall discuss some stylized properties and point out plausibly desirable or questionable
model features. Symmetric-stable distributions have been a part of portfolio theory for over fifty
years, so what does the focus on spectrally negative stables, and the generalizations, bring to the
table?

As already mentioned, the positive projections of a spectrally negative stable vector will have
only the lower tail heavy; the upper tail will be light, and the sample paths of a corresponding Lévy
process will have no upwards jumps. Those asymmetry properties can be seen as appealing from an
insurance and loans point of view!; even though there might be a bound on single-exposure losses,
then portfolio losses could still be heavy tailed to beyond the insolvency of the insurer/lender. That
is not to say that the sample paths are linearly upper bounded; under integrability, or assuming
embedding for p > 1, the continuous part is of infinite variation, a consequence of the martingale
property of the zero-location part. The further generalization to ¥, gives a class of distributions
which need not share the properties of the spectrally negative stables; One obvious feature is that
the class includes distributions with both tails heavy (e.g., XH where X is spectrally negative stable
and H takes values 1 with probabilities 77+ > 0 and 0 with probability 1 — 7t — 7r_, stable only if
4+ + m— < 1). Furthermore, the question of infinite divisibility is out in the unknown, and with it,
the question of whether we can build a continuous-time model with independent increments.

In addition to the obvious tail heaviness issues, the model of course has other questionable
features. The absence of “sudden good news” for the spectrally negative model is disputable for a
general market model (although that has not precluded the use of Gaussian continuous-time models
where there is no discontinuous arrival of information at all). Why worry — from a technical point of
view — about the general market and not focus on a market segment where the assumptions are more
fitting? Because the model would then have to make either an assumption of stochastic independence
between the segments, or the assumption that the agents cannot invest across segments. Concerning
the latter, suppose for example that the markets are jointly stable, but the other segment has
symmetric returns; then the agents will have to determine their skewness as well, and the optimum
is not trivial except the elliptical case. Finally, let us discuss the assumption of no short sale: one
can arguably defend non-shorting of, e.g., retail insurance or loan exposures. On the other hand, one
can argue that insurance — with any sort of deductible — means that some agents are taking positions

For a flavour of both types of loss events, one can see Moscadelli [32], who studies operational losses (due to failed internal
processes, fraud, infrastructure failures etc.) in the banking sector. The estimated tail index is significantly heavier than two
for all eight business lines considered, heavier than one in three of them, and statistically tied to one (inside a 95 percent
confidence interval) in the other five.
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opposite of others; even still, the betas would characterize the demand of those agents who cannot
take short positions.

In any case, we have given a proper generalization of elliptical and symmetric-stable CAPM,

which can thus be seen as yet another robustification of the well-established model.
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