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Abstract

The paper is concerned by the existence of W 1,1-solutions of fuzzy
diferential equation

u′ = f(t, u),

with t ∈ (a, b), f satisfies some Carathéodory conditions and u(a) = u(b).
Existence of solutions is given by lower and upper-solutions method and
Schauder’s fixed point theorem. An application is given and, a result of
multiplicity is obtained.
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1 Introduction

This work is concerned by the study of existence of W 1,1-solutions of the fuzzy
differential equation

u′ = f(t, u), t ∈ (a, b) (1)

with some periodic conditions (see section 3), where f : [a, b] × RF → RF is
a Carathéodory function, [a, b] ⊂ R with a < b, and RF is the class of normal
and convex fuzzy number defined in section 2.
Our approach is based on the method of lower and upper solutions which relies
on standard monotonicity result for function whose derivative is one signed.
We obtain existence and location of solutions of (1). The method of lower and
upper solution is used, in crisp case, in many applications for first, second and
higher order problems for ODE (see e.g. [1,2,5,7] for a thorough account) but,
only few results are reported in fuzzy case (see e.g.[6] and reference there in).
Our results seem to be new in the theory of fuzzy differential equations, and the
techniques used are of independent interest .
Our paper is organized as follows: in section 2, we give some preliminaries in
fuzzy sets and functions and define some function spaces : LpF for 1 ≤ p ≤ ∞ and
W 1,1, and some of their properties. In section 3, we state and prove our main
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result which gives the existence of periodic W 1,1-solutions of (1). In section 4,
we give an application in Ambrosetti-Prodi type problems, and obtain a result
of multiplicity.

2 Preliminaries

2.1 Fuzzy sets and functions

Let X be a non empty set, a fuzzy subset of X is a mapping u : X → [0, 1] (see
[4]). The r-level set [u]r of fuzzy set u(x) on X is defined as

[u]r = {x ∈ X | u(x) ≥ r, ∀r ∈ (0, 1]}.

The support set [u]0, is the closure in the topology of X of the union of level
sets[u]r, 0 < r ≤ 1. It is well-known that [u]r is compact for each 0 ≤ r ≤ 1,
and [u]r1 ⊂ [u]r2 whenever 0 ≤ r2 ≤ r1 ≤ 1. Let us denote by RF the class of
fuzzy subsets of R satisfying the following conditions:

(a) u is normal i.e. ∃x0 ∈ R with u(x0) = 1;

(b) u is convex fuzzy i.e. ∀λ ∈ [0, 1] and x, y ∈ R, u(λx + (1 − λ)y ≥
min{u(x), u(y)};

(c) u is upper semicontinuous.

For all u, v ∈ RF and λ ∈ R, the sum u ⊕ v and the scalar product λ � u are
well defined by [u⊕v]r = [u]r+[v]r and [λ�u]r = λ[u]r, as addition of intervals
and dilatation of interval.
A metric is defined on RF as follows (see [4]): d : RF × RF → R+ ∪ {0},
(u, v) 7→ d(u, v) = sup0≤r≤1 max(| ur− − vr− |, | ur+ − vr+ |), where [u]r = [ur−, u

r
+]

and [v]r = [vr−, v
r
+].

The metric d satisfies the following properties

(1) d(u⊕ w, v ⊕ w) = d(u, v), for all u, v, w ∈ RF ;

(2) d(k � u, k � v) =| k | d(u, v) for k ∈ R and u, v ∈ RF ;

(3) d(u⊕ w, v ⊕ e) = d(u, v) + d(w, e) for u, v, w, e ∈ RF .

The pair (RF , d) forms a complete metric space. The following properties are
well-known (see[4]):

Theorem 1 (i) If 0̃ = χ0, then 0̃ ∈ RF and is the neutral element with
respect to he sum in RF . In particular R ⊂ RF;

(ii) with respect to 0̃ and the sum in RF , none of u ∈ RF \R has its inverse
in RF .

(iii) for all h, k ∈ R with k, h ≥ 0 and for any u ∈ RF , (k+h)�u = k�u+h�u;
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(iv) for any λ ∈ R, and u, v ∈ RF , λ� (u⊕ v) = λ� u⊕ λ� v;

(v) for any λ, µ ∈ R and u ∈ RF , λ� (µ� u) = (λµ)� u.

Definition 1 A function f : (a, b) ⊂ R→ RF is said to be strongly generalized
differentiable at x0 ∈ (a, b), if there exists an element f ′(x0) ∈ RF such that

• (i) for all h > 0 sufficiently small, there exist f(x0 + h) − f(x0, f(x0) −
f(x0 − h) and limits in the metric d

lim
h↘0

f(x0 + h)− f(x0)
h

= lim
h↘0

f(x0 − h)− f(x0)
h

= f ′(x0);

or

• (ii) for all h > 0 sufficiently small, there exist f(x0)− f(x0 + h), f(x0 −
h)− f(x0) and the limits

lim
h↘0

f(x0)− f(x0 + h)
−h

= lim
h↘0

f(x0 − h)− f(x0)
−h

= f ′(x0);

or

• (iii) for all h > 0 sufficiently small, there exist f(x0 + h)− f(x0), f(x0 −
h)− f(x0) and the limits

lim
h↘0

f(x0 + h)− f(x0)
h

= lim
h↘0

f(x0 − h)− f(x0)
−h

= f ′(x0);

or

• iv for all h > 0 sufficiently small, there exist f(x0 − f(x0 + h), f(x0 −
f(x0 − h) and the limits

lim
h↘0

f(x0)− f(x0 + h)
−h

= lim
h↘0

f(x0 − f(x0 − h)
h

= f ′(x0).

Let C̄[0, 1] = {ϕ : [0, 1 → R | ϕ is bounded on [0, 1], left continuous for any
t ∈ (0, 1], right continuous on 0 and ϕ has right limits for any t ∈ [0, 1)} endowed
with the norm ‖ ϕ ‖= sup{| ϕ(t) | : t ∈ [0, 1]}, C̄[0, 1] is a Banach space , and
so is C̄[0, 1]× C̄[0, 1] with the norm ‖ (ϕ,ψ) ‖= max(‖ ϕ ‖, ‖ ψ ‖) .

Theorem 2 (see[3]) If we define j : RF → C̄[0, 1]× C̄[0, 1] by j(u) = (u−, u+),
where u+ : [0, 1] → R is a non increasing function for all r ∈ (0, 1], and
u− : [0, 1] → R is increasing for all r ∈ (0, 1], u±(r) = ur±, then j(RF ) is a
closed convex cone with vertex 0 in C̄[0, 1]× C̄[0, 1] and j satisfies,

(a) j(λ� u⊕ µ� v) = λj(u) + µj(v) for any u, v ∈ RF and λ, µ ≥ 0;
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(b) d(u, v) =‖ j(u)− j(v) ‖.

If u is strongly differentiable as in Definition 1(i), then (j(u))′ = j(u′). To
deal with the case (ii), we consider another embedding function j̃ : RF →
C̄[0, 1]× C̄[0, 1] defined by j̃(u) = j((−1)�u). Clearly, j̃ satisfies conditions (a)
and(b) of Theorem 2 and j̃(RF ) = j(RF ). If u is differentiable as in Definition
1(ii), then (j(u))′ = −j̃(u′). Note that Definition 1(iii) and (iv) cases can
happen on discret set of points. It is also well-known (cfr [1]) that if u is
simultaneousy (i) and (ii) at a point t0, then u′(t0) ∈ R
The above theorem implies that j and j̃ are embedding RF isometrically and
isomorphically into C̄[0, 1]×C̄[0, 1]. Clearly j ( or j̃) is continuous as its inverse.
Let M be the set of all functions u : (a, b) ⊂ R→ RF continuous and strongly
generalized differentiable as in Definition 1(i) or (ii).

2.2 Functions spaces

Let fr(t) = [f(t)]r, for f : I ⊂ R → RF The integral of f on I is given by
(see[6])

[
∫
I

f(t) dt]r =
∫
I

fr(t) dt.

Let us define the LpF space by

LpF (I) = {f ∈ C(I,RF ) | fr ∈ Lp(I), r ∈ [0, 1]}

for 0 ≤ p ≤ ∞. We define the seminorms

‖ f ‖p= (
∫
I

(fr(t))p dt)
1
p , 1 ≤ p <∞

and
‖ f ‖∞= inf{C | fr(t) ⊂ C ·B(0, 1), a.e. t ∈ I, r ∈ [0, 1]}.

To every f ∈ LpF (I), one can associate using the function j, the element
(f−(t), f+(t)) of j(RF )such that fr± ∈ Lp(I), for all r ∈ [0, 1]. Using this
isomorphism-isometry and identifying in Lp(I) functions that are equal almost
everywhere on I, one can define the space

LpF (I) = {(f−(t), f+(t)) | fr± ∈ Lp(I), 1 ≤ p ≤ ∞}

with norm

‖ (f−, f+) ‖p= max{(
∫
I

| fr−(t) |p dt)
1
p , (

∫
I

| fr+(t) |p dt)
1
p }

for 1 ≤ p <∞ and

‖ (f−, f+) ‖∞= max{(inf(C1), inf(C2) | | fr−(t) |< C1, | fr+(t) |< C2, a.e. t ∈ I, r ∈ [0, 1]}.

The semilinear structure is well defined on LpF (I). Indeed, let f and g ∈ LpF (I),
since

[f(t)⊕ g(t)]r = [f(t)]r + [g(t)]r = fr(t) + gr(t)
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and
(fr(t) + gr(t))p ≤ 2p((fr(t))p + (gr(t))p),

we have fr + gr ∈ Lp(I) so that f ⊕ g ∈ LpF (I). For any λ ∈ R and f ∈ LpF (I),
we have λfr ∈ Lp(I), so that λ � f ∈ LpF (I). Using the isomorphism-isometry
j, we get j(f ⊕ g) ∈ LpF (I) and j(λ � f) ∈ LpF (I) for all λ ≥ 0 or λ ≤ 0 where
j((−1)� f) = j̃(f).

Definition 2 A function f : I ×RF → RF satisfies a L1
F -Carathéodory con-

dition if f(t, ·) is continuous for a.e. t ∈ I, f(·, u) is strongly measurable (see
[6]Def. 2.3.1.) for each u ∈ RF , and for every ρ > 0 there exists a func-
tion hρ ∈ L1(I) such that for a.e.t ∈ I and for all u ∈ RF with d(u, 0̃) ≤ ρ,
max{| fr−(t, u) |, | fr+(t, u) |} ≤ hρ(t).

Denote by W 1,1(I) the space of all functions in M whose first derivative satisfies
the above L1

F -Carathéodory condition.

3 Main result

Let J ⊂ R an open interval, and consider w : J → RF a (i)-differentiable
solution of equation (1), then w is continuous and has an increasing support.
Let t0 ∈ J and consider v : [t0,+∞[→ RF , a (ii)-differentiable solution of the
initial value problem

v′ = f(t, v(t)), t > t0

v(t0) = w(t0).

Then v(t) is continuous and has a decreasing support.
Define

u(t) = w(t) if t ≤ t0,
= v(t) if t ≥ t0,

then u(t) is continuous and simultaneously (i) and (ii) differentiable at t0 and
u′(t0) is real. Moreover, one can find a, b ∈ J , with a < t0 < b, such that
[u(a)]0 = [u(b)]0. Hence, we can define the condition

u(a) = u(b),

and consider the boundary value problem

u′ = f(t, u) , t ∈ (a, b) ⊂ R

u(a) = u(b), (2)

where f : [a, b] ×RF → RF is a L1
F -Carathéodory function. We shall use the

following notation:
Notation: For all α, β ∈ RF , α � β means α− ≤ β− and α+ ≤ β+, α ≺ β
means α− < β− and α+ < β+, [α, β]∼ = {u | α � u � β}, and (α, β)∼ = {u |
α ≺ u ≺ β}.
We define a W 1,1-lower-solution and a W 1,1-upper-solution as follows

5
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Definition 3 A function α : [a, b] → RF , left continuous and bounded is a
W 1,1-lower -solution of (3), if there exists a partition P : a = t1 < t2 < · · · <
tn = b such that

(i) ∀k = 1, 2, · · · , n − 1, α ∈ W 1,1(tk, tk+1) and α′(t) � f(t, α(t)) for a.e.
t ∈ (tk, tk+1);

(ii)1 ∀k = 2, 3, · · · , n − 1, limt→t−
k+1

α(t) � limt→t+
k
α(t) and limt→t+

k−1
α(t) ≺

α(t0), if t ∈ [a, t0); or

(ii)2 ∀k = 2, 3, · · · , n − 1, limt→t+
k
α(t) � limt→t−

k+1
α(t) and limt→t−

k+1
α(t) ≺

α(t0), if t ∈ (t0, b].

A function β : [a, b]→ RF left continuous and bounded is a W 1,1-upper-solution
of (3) if there exists a partition Q :a = s1 < s2 < · · · < sm = b such that

(i) ∀i = 1, 2, · · · ,m − 1, β ∈ W 1,1(si, si+1) and β′(t) � f(t, β(t)) for a.e.
t ∈ (si, si+1);

(ii)1 ∀i = 2, 3, · · · ,m − 1, limt→s−
i+1

β(t) ≺ limt→s+
i
β(t) and limt→t+

i−1
β(t) �

β(t0), if t ∈ [a, t0);or

(ii)2 ∀i = 2, 3, · · · ,m−1, limt→s+
i
β(t) ≺ limt→s−

i+1
β(t) and β(t0) ≺ limt→t−

i+1
β(t),

if t ∈ (t0, b].

From now one, we shall call α(t) a lower-solution, and β(t) an upper-solution.
Our main result is the following

Theorem 3 Assume α � β and define the set

E = {(t, u) ∈ [a, b]×RF | α(t) � u � β(t)}.

If f satisfies a L1
F -Carathéodory condition on E, then the problem (2) has at

least one solution u ∈W 1,1(a, b) such that for all t ∈ [a, b], α(t) � u(t) � β(t).

Proof. Let us consider the modified problem

u′ ⊕ u = f(t, γ(t, u))⊕ γ(t, u) (3)
u(a) = u(b) (4)

where γ : [a, b]×RF → RF is defined by

γ(t, u) = α(t) if u ≺ α(t)
= u if α(t) � u � β(t)
= β(t) if u � β(t)

We first prove that every solution of (3)-(4) belongs to E. Indeed, assume by
contradiction that there exists t∗ ∈]a, b[ and t∗ ∈]a, b] such that for all t ∈ [t∗, t∗],
with t 6= tk, k = 1, 2, . . . , n − 1, α(t) � u(t). Using the isomorphism-isometry
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j, we get j ◦ u(t) < j ◦ α(t). Hence, j ◦ α(t)− j ◦ u(t) achieves a strict positive
maximum on [t∗, t∗]. Let tM ∈ [t∗, t∗] be this maximum point. If tM 6= tk, then
(j ◦ α)′(tM ) − (j ◦ u)′(tM ) = 0. If [t∗, t∗] ⊂ (a, t0], then for all t ∈ [t∗, t∗], we
have

(j(u(t)))′ − (j(α(t)))′ = j(u′(t))− j(α′(t))
≥ j(α(t))− j(u(t)) + j(f(t, γ(t, u)))− j(f(t, α(t)))
= j(α(t))− j(u(t)) > 0.

If [t∗, t∗] ⊂ [t0, b), then for all t ∈ [t∗, t∗], we have

(j(α(t)))′ − (j(u(t)))′ = −j̃(α′(t)) + j̃(u′(t))
≥ −j̃(f(t, α(t))) + j̃(f(t, γ(t, u))) + j̃(α(t))− j̃(u(t))
= j̃(α(t))− j̃(u(t)) > 0.

Hence, there exists c > 0 such that c <‖ (j(α(t)))′ − (j(u(t)))′ ‖, for all t ∈
[t∗, t∗]. Integrating over [t∗, t∗], we get

0 < c | t∗ − t∗ |≤
∫ t∗

t∗

‖ (j ◦ α)′(t)− (j ◦ u)′(t) ‖ dt.

This being true for all t ∈ [t∗, t∗], in particular, for t = tM , we have

0 < c | t∗ − t∗ |≤ 0 · (t∗ − t∗) = 0,

and we get a contradiction. On the other hand,if tM = tk, k = 1, 2, · · · , n − 1,
then there exists ε > 0 such that j ◦ α(t) − j ◦ u(t) is strictly decreasing for
all t ∈ (tk, tk + ε]. Refining, if necessary, the partition P into Pε which is
| tk+1− tk |≤ ε for all k = {1, 2, · · · , n− 1} , and let l ∈ {1, 2, · · · , n− 1} be such
that t0 ∈]tl, tl+1[, then for all s ∈ (tk, tk+1) using (ii)1, (ii)2 we have

0 >
n−1∑
k=1

∫ tk+1

tk

((j ◦ α)′(s)− (j ◦ u)′(s)) ds =
l−1∑
k=1

{ lim
s→t−

k+1

j ◦ α(s)− lim
s→t+

k

j ◦ α(s)}

+j ◦ α(t0)− lim
s→t+

l

j ◦ α(s) + j ◦ u(b)− j ◦ u(a)

+j ◦ α(t0)− lim
s→t−

l+1

j ◦ α(s)

+
n−1∑
k=l+1

{ lim
s→t+

k

(j ◦ α(s)− lim
s→t−

k+1

j ◦ α(s) > 0

and we get a contradiction. These two contradictions, prove that α(t) � u(t).
Similar arguments are used to prove that u(t) � β(t). We now prove the
existence of solutions of (3)-(4). Let us consider the Cauchy problem

u′ = f(t, u)
u(a) = u0.

7
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Since u(a) = u0 = u(b), integrating the above differential equation over ]a, t] ,
we obtain

u(t) = u0 ⊕
∫ t

a

f(s, u(s)) ds, (5)

if t ∈]a, t0], or

u(t) = u0 ⊕
∫ t0

a

f(s, u(s)) ds− (−1)�
∫ t

t0

f(s, u(s)) ds (6)

if t ∈]t0, b[. Using the isomorphism-isometry j to (5)or (6), we get

j ◦ u(t) = j ◦ u0 +
∫ t

a

j ◦ f(s, u(s)) ds, (7)

or

j ◦ u(t) = j ◦ u0 +
∫ t0

a

j ◦ f(s, u(s)) ds−
∫ t

t0

j̃ ◦ f(s, u(s)) ds. (8)

Since u0 = u(a) = u(b), we have

j(u(t)) = j(u(b)) +
∫ t

a

j(f(s, u(s))) ds, (9)

or

j(u(t)) = j(u(b)) +
∫ t0

a

j(f(s, u(s)) ds−
∫ t

t0

j̃(f(s, u(s))) ds. (10)

Define on j(RF ) the mapping T by

Tj ◦ u(t) = j ◦ u(b) +
∫ t

a

j ◦ f(s, u(s)) ds, if t ∈]a, t0[

= j ◦ u(b) +
∫ t0

a

f(s, u(s)) ds−
∫ t

t0

j̃ ◦ f(s, u(s)) ds, if t ∈]t0, b[

Thus fixed points of T are solutions of the integral equation (9)or (10). It is
easy to prove that T is bounded and completely continuous in j(E). Since
j(E) is convex, closed and bounded, we have a retract of the Banach space
C̄[0, 1] × C̄[0, 1], and the Schauder’s fixed point theorem implies that: T has
a fixed point in j(E) which is a solution of (7)or (8). Using the isomorphism
j, (5)(or (6)) and (7) (or (8)), we obtain a solution of (3)-(4) in E, which is a
solution of (2) in E.

4 Application: a multiplicity result

In this section, we shall work with the embedding function j and use similar
argument for j̃ if necessary. Consider the following problem

(Ps) : u′ + f(t, u) = s

u(a) = u(b)

8
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with f : [a, b]×RF → RF is a L1
F -Carathéodory function, s ∈ RF a parameter,

and j(f(t, u)) = (f−(t, u), f+(t, u)) such that

(H3)(a) f+(t, u)→ +∞ and f−(t, u) > 0 as ‖ j(u) ‖→ ∞ or ;

(H3)(b) f−(t, u)→ −∞ and f+(t, u) < 0 as ‖ j(u) ‖→ ∞.

Theorem 4 Assume that (H0), (H1),and (H2) hold. If f satisfies (H3)(a)
or (H3)(b), then there exists s1 ∈ RF with s1 � ess inft∈I{minu∈R f(t, u)},
I = [a, b], such that

(a) if s ≺ s1 then (Ps) has no solution;

(b) if s = s1 then (Ps) has at least one solution;

(c) if s � s1 then (Ps) has at least two solutions.

Proof. For any i ≥ 1, let
Si = {s ∈ RF such that (Ps) has at least i solutions }
The proof is divided in five steps
(a) S1 6= ∅. Indeed, taking into account that R ∈ RF and take s∗ � ess supt∈I{f(t, 0)}
(i.e. s∗− > ess supt∈I(fr−(t, 0)) and s∗+ > ess supt∈I(fr+(t, 0))), then (H3) implies
that there exists a real Rs∗ > 0 such that f(t, Rs∗) � s∗ for a.e. t ∈ I. Using
theorem 3 with α = 0 and β = Rs∗ there exists u ∈ RF which is a solution of
(Ps∗). Thus s∗ ∈ S1.
(b) If s̃ ∈ S1 and s � s̃, then s ∈ S1. Indeed, let ũ be a solution of (Ps̃) and
define

Fs(ũ)(t) = j(ũ′(t)⊕ f(t, ũ))− j(s).

Since j(ũ′(t) ⊕ f(t, ũ)) = j(s̃), we have Fs(ũ)(t) = j(s̃) − j(s) < 0, for a.e.
t ∈ I. By (H3), there exists Rs > maxt∈I ‖ j(u(t) ‖ such that for a.e. t ∈
I,f(t,−Rs) � s and f(t, Rs) � s. Hence, for a.e. t ∈ I, j(Fs(−Rs))(t) > 0
and j(Fs(Rs))(t) > 0. Applying theorem 3 with α = −Rs and β = ũ ∈ RF or
α = ũ ∈ RF and β = Rs, we see that (Ps) has at least two solutions u1 and u2

with −Rs ≺ u1(t) ≺ ũ(t) and ũ(t) ≺ u2(t) ≺ Rs.
(c) If s1 = inf S1, then s1 � σ = ess inft∈I(minu∈RF

f(t, u)). Indeed, by
(H3)(b), σ = ess inft∈I(minu∈RF

f(t, u)) exists. If (Ps) has a solution u(t),
then it must satisfies

s =
1

b− a

∫ b

a

(u′(t)⊕ f(t, u(t))) ds � σ,

so that s1 � σ. If s � s1, then there exists s̃ ∈ (s1, s)∼ ∩ S1, and by the part
(b), s ∈ S2.
(d) For each s̃ � s1, the set of all solutions of (Ps) with s � s̃ is a priori bounded.
Indeed, let Rs̃ > 0 a real be such that f(t, v) � s̃ whenever ‖ j(v) ‖≥ Rs̃, for
a.e. t ∈ I and let u ∈ W 1,1(I) be a possible solution of (Ps). If there exists
t̄ ∈ (a, b) such that

max
t∈I

u(t) = u(t̄)

9
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then, there exists a sequence (tn) ⊂ [a, b] with tn → t̄ such that u′(tn) exists in
the generalized sense (i) or (ii) for each n ≥ 0 and

u′(tn)⊕ f(tn, u(tn)) = s.

Thus
j(u′(tn) + j(f(t, u(tn))) = j(s).

Since u(t) is strongly differentiable in the generalized sense (i) or (ii), j ◦ u is
Fréchet differentiable and by continuity, we have (j◦u)′(t̄) = 0 that is j◦u′(t̄) = 0
or −j̃ ◦u′(t̄) = 0 . Hence, j(RF ) being a cone with vertex 0, (tn) can be chosen
such that j ◦ u′(tn) ≥ 0 or −j̃ ◦ u′(tn) ≥ 0. Thus

j(s)− j(f(tn, u(tn))) = j ◦ u′(tn ≥ 0

or
j̃(s)− j̃(f(tn, u(tn))) = j̃ ◦ u′(tn) ≤ 0

and
0 ≤ j(s)− j(f(tn, u(tn))) ≤ j(s̃)− j(f(tn, u(tn))).

Hence
j(f(tn, u(tn))) ≤ j(s̃)

for every n ∈ N, taking into account that s � σ implies that j̃(σ) ≤ j̃(s) we
get similar relations for j̃. Hence f(tn, u(tn)) � s̃ for all n ∈ N . Therefore,
‖ j(u(tn)) ‖< Rs̃ . Hence u(tn) converges uniformly. Passing to the limit we
have

‖| j(u(t̄)) ‖< Rs̃.

If t̄ = a, then since j ◦ u(a) = j ◦ u(b), we have

max
t∈I

j ◦ u(t) = j ◦ u(a) = j ◦ u(b),

and hence j ◦ u′(a) ≤ 0 ≤ j ◦ u′(b). Therefore, j(f(a, u(a))) − j(s) ≤ 0 and
j(f(a, u(a))) ≤ j(s) ≤ j(s̃) imply that ‖ j(u(a)) ‖< Rs̃, and 0 ≤ j ◦ u′(b) =
j(s)− j(f(b, u(b))) ≤ j(s̃)− j(f(b, u(b))), implies that ‖ j(u(b)) ‖< Rs̃.
(e) s1 ∈ S1. Indeed, let (σn) be a decreasing sequence in

T1 = {s ∈ R
¯F
| s � s1}

such that σn → s1, and for all n ∈ N, let (un)n∈N be the corresponding sequence
of solutions of (Ps). If Rσ1 is the a priori bound of the part (d), then

max
t∈I
‖ j(un(t)) ‖< Rσ1 .

Since,
u′n(t)⊕ f(t, un(t)) = σn,

we have
j ◦ u′n(t) + j(f(t, un(t)) = j(σn),
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and integrating for t ∈ (a, b), we get

j ◦ un(t)− j ◦ un(a) = j(σn)(t− a)−
∫ t

a

j(f(s, un(s))) ds

or

j ◦ un(a)− j ◦ un(t) = j̃(σn)(t− a)−
∫ t

a

j̃(f(s, un(s))) ds

thus

j ◦ un(t)− j ◦ un(b) = j(σn)(t− a)−
∫ t

a

j(f(s, un(s))) ds; (11)

or

j ◦ un(b)− j ◦ un(t) = j̃(σn)(t− a)−
∫ t

a

j̃(f(s, un(s))) ds, (12)

and without loss of generality, let us fixe un(b) = u0 for all n ∈ N, and take
into account that ‖ j(f)− j(g) ‖=‖ j̃(f)− j̃(g) ‖, for all m,n ≥ 0, we have

‖ j(um)(t)− j(un)(t) ‖ = ‖
∫ t

a

j(f(s, un(s)))− j(f(s, um(s))) ds+ t− a)(j(σm)− j(σn)) ‖

≤
∫ t

a

‖ j(f(s, un(s)))− j(f(s, un(s))) ‖ ds

+
∫ t

a

‖ j(σm)− j(σn) ‖ ds

≤
∫ t

a

‖ j(f(s, un(s)))− j(f(s, um(s))) ‖ ds

+
∫ t

a

{‖ j(σm)− j(s1) ‖ + ‖ j(s1)− j(σn) ‖} ds

≤ ε

3
(b− a) +

ε

3
(b− a) +

ε

3
(b− a) = ε(b− a).

Hence j ◦ un(t)) is a Cauchy sequence in C([a, b], j(RF )) with norm ‖ z ‖0=
maxt∈I ‖ z(t) ‖ . By the completeness, we have j(un(t))→ j(u(t)).
Define gn(t) ∈ RF by

gn(t)⊕ f(t, u(t)) = f(t, un(t))

then,
j ◦ gn(t) = j ◦ f(t, un(t))− j ◦ f(t, u(t)).

Since j ◦ f(t, ·) is continuous for a.e. t ∈ I, we have∫ t

a

‖ j ◦ gn(s) ‖ ds =
∫ t

a

‖ j ◦ f(s, un(s))− j ◦ f(s, u(s)) ‖ ds

≤ ε(b− a), (13)
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for all ε > 0. Hence, as n → ∞, j ◦ gn(t) → 0 for a.e. t ∈ I. Since f is a
L1
F -Carathéodory function, we have∫ t

a

‖ j ◦ f(s, u(s)) ‖ ds <∞

for all u such that ‖ j◦u(t) ‖≤ ρ with ρ ≥ Rσ1 . Denote by ϕε(gn(t)) =‖ j◦gn(t) ‖
and ψε(f(t, u(t))) =‖ j ◦ f(t, u(t)) ‖. Then

‖ j(f(t, u(t))⊕ gn(t))− j(gn(t)) ‖≤ εϕε(gn(t)⊕ ψε(f(t, u(t))).

Since we have,

(i) j ◦ gn(t)→ 0 a.e.t ∈ I;

(ii) j ◦ f ∈ L1;

(iii)
∫ b
a
ϕε(gn(t)) dt ≤ C <∞ ;

(iv)
∫ b
a
ψε(f(t, u(t))) dt <∞,

using the Brezis-Lieb Lemma (see[4] Theorem 2), we obtain∫ t

a

‖ j(gn(s)⊕ f(s, u(s)))− j(gn(s))− j(f(s, u(s))) ‖ ds→ 0

as n→∞ for all t ∈ I. Thus

lim
n→∞

∫ t

a

j(gn(s)) ds = lim
n→∞

∫ t

a

{j(f(s, un(s)))− j(f(s, u(s)))} ds.

Using the dominated convergence and (13), we have

lim
n→∞

∫ t

a

j(f(s, un(s))) ds =
∫ t

a

j(f(s, u(s))) ds.

Hence, passing to the limit in (11) or (12), we get

j ◦ u(t)− j ◦ u(b) = j(s1)(t− a)−
∫ t

a

j ◦ f(s, u(s)) ds

or

j ◦ u(b)− j ◦ u(t) = j̃(s1)(t− a)−
∫ t

a

j̃ ◦ f(s, u(s)) ds

for all t ∈ I. Since j ◦ u(a) = j ◦ u(b), u satisfies (Ps1). Thus, s1 ∈ S1.

Remarks. The theory in this paper, though it gives similar results as in classi-
cal case, is more rich than in classical case, since the behaviour of functions in
fuzzy case is completely different than the behaviour in classical case. Indeed

12

40 R.W. OMANA / SAJPAM  VOlUME 4 (2009) 29-43

xman
New Stamp



(1) Fuzzy solutions of (1) are mappings assigning a membership grade taking
value in [0, 1] to elements of a nonempty base set.

(2) Some concepts such as periodicity or stability cannot be defined as in
classical case, since in fuzzy case solutions of the initial value problem
suffer the disadventage of having increasing support. For the periodic
solutions, we overcame this shortcoming by using a pasting approach.

(3) The W 1,1-lower and upper solutions defined in definition 3, have a be-
haviour completely different than in classical case.

(4) When a real world problem or phenomenon is transformed by a determin-
istic model into a boundary or initial value problem of equation (1), it is
not usually sure that the model is perfect. It could contain some incer-
tainty, for example the function f could contain uncertain parameters or
the boundary values could not be known exactly. The estimation of solu-
tions will necessarly be subject to some errors. If the nature of this errors
is random, stochastictic differential equations with random datas could be
used, but if the underlying structure is not probabilistic, the best way to
manage such a problem is to use fuzzy differential equations. Therefore,
the theory used in the paper is more general and more rich than in the
classical case.We point out that R ⊂ RF.
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