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Abstract

This paper addresses the problem of double-diffusive convection in
a horizontal layer filled with a fluid in the presence of temperature
gradients (Soret effects) and concentration gradients (Dufour effects).
The onset of convection is studied using linear stability analysis. The
critical Rayleigh numbers for the onset of convection are determined in
terms of the governing parameters.

1 Introduction

The study of the onset of convection in porous medium is of paramount im-
portance to the study of the behaviour of fluids in the crust of the earth, in
geology, geophysics, metallurgy, material science and petroleum engineering.
A detailed review of the topic is given by Nield and Bejan (2006).

Convection motion sets in if a quiescent fluid layer bounded by horizontal
boundaries is subjected to an adverse temperature gradient (heated from be-
low). The convective stability limit of a fluid heated from below is described
by the Rayleigh number which has been determined to be of order 4π2 (Nield
1991). This limit determines the point at which convective instability may
start occurring in a fluid layer. Convective fluid flow induced by buoyancy
forces resulting from the imposition of thermal and solutal boundary condi-
tions is called double-diffusive convection.

Taslim and Nasurawa (1986) and Malashetty (1993) used linear stability anal-
ysis to investigate the onset of convection in a double-diffusive flow. This work
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was later extended by Nield et. al (1993) to consider the effects of inclined
temperature and solutal gradients. In this study it was observed that both the
thermal and solutal Rayleigh numbers contributed significantly in the onset
of the convective instability. More recently Bahloul et. al (2003) investigated
the effect of thermal diffusion (Soret effect) in double-diffusive flows. Soret
effect refers to the maintenance of concentration gradient due to temperature
gradient. Maintenance of temperature gradient due to concentration gradient
is called the Dufour effect.

In this study we investigate the effect of both the Soret and Dufour effects
on the onset of double-diffusive convection. Whilst Soret effects have been
widely studied in related convective studies in porous media (see for example,
Ouarzazi and Bois 1994, Bahloul et. al 2003), the Dufour effects has received
little attention. This is partly due to the fact the Dufour effects have been
reported to be negligible in liquid mixtures (Schechter et. al 1972). In gas
mixtures, however, the Dufour effects are very important.

2 Mathematical Formulation

We consider a porous medium occupying a horizontal layer of fluid mixture
of height H as shown in Figure 1. A constant temperature and concentration
distribution is prescribed at the boundaries. The vertical temperature differ-
ence across the boundaries is ΔT and the vertical concentration difference is
ΔC.

z =0

z =H

T =T0 C =C0

C =C0 + ΔCT =T0 + ΔT

z

x

Figure 1: Horizontal layer heated and salted from below

We assume that the medium is homogeneous and isotropic and that Darcy’s
law is valid and the Oberbeck-Boussinesque approximation is applicable. Ac-
cordingly, the appropriate governing equations are
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∇ · v = 0, (1)

0 = −∇p − μ

K
v + ρfg, (2)

σ
∂T

∂t
+ v · ∇T = αm∇2T + DTC∇2C, (3)

φ
∂C

∂t
+ v · ∇C = Dm∇2C + DCT∇2T, (4)

ρf = ρ0[1 − γT (T − T0) − γC(C − C0)]. (5)

Here (u, v, w) = v is the Darcy velocity, p is the pressure, g is the acceleration
due to gravity, μ is the viscosity, T and C are the temperature and concen-
tration respectively. The subscripts m and f refer to the porous medium and

the fluid, respectively. Also σ =
(ρcp)f

(ρcp)m
where ρ and cp denote density and

specific heat while K and φ are the permeability and porosity of the medium,
αm and Dm are thermal conductivity and solutal diffusivity of the medium,
DTC and DCT are the Dufour and Soret coefficients. Also γT and γC are the
thermal and solutal expansion coefficients in the medium.

As shown in Figure 1, the boundary conditions on C and T are

C = C0 + ΔC , T = T0 + ΔT at z = 0 (6)

C = C0 , T = T0 at z = H. (7)

Also, since the boundaries are impermeable, we have

v · n̂ = 0. (8)

For the set of equations (1 - 8), the steady state solution is given as

Vs = (0, 0, 0), (9)

Ts = T0 + ΔT
(
1 − z

H

)
, (10)

Cs = C0 + ΔC
(
1 − z

H

)
, (11)

ps = p0 − ρ0g

[
(T0 + C0)z + (γTΔT + γCΔC)

(
z − z2

2H

)]
. (12)

We now superimpose small perturbations on the basic state in the form

v = v′ , T = Ts + T ′ , p = ps + p′ , C = Cs + C ′ (13)
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where the primes denote the perturbed quantities. Substituting (13) into (1)
- (4) and neglecting higher order terms of the perturbed quantities we obtain,

∇ · v′ = 0, (14)

0 = −∇p′ − μ

K
v′ − ρ0(γT T ′ + γCC ′)g, (15)

σ
∂T ′

∂t
− w′ΔT

H
= αm∇2T ′ + DTC∇2C ′, (16)

φ
∂C ′

∂t
− w′ΔC

H
= Dm∇2C ′ + DCT∇2T ′, (17)

We non-dimensionalize equations (14 - 17) by introducing the following di-
mensionless variables,

(x∗, y∗, z∗) = 1
H

(x, y, z) v∗ = H
αm

v′ t∗ = αm

σH2 t

T ∗ = T ′
ΔT

C∗ = C′
ΔC

p∗ = K
μαm

p′.
(18)

The dimensionless equations are, with “*” omitted for brevity,

∇ · v = 0, (19)

∇p = v + Ra(T + NC) = 0, (20)

∂T

∂t
− w = ∇2T + Df∇2C, (21)

φ

σ

∂C

∂t
− w =

1

Le
∇2C + Sr∇2T. (22)

where

Ra =
gγTKΔT

ναm

is the thermal Rayleigh number

N =
γCΔC

γT ΔT
is the buoyancy ratio

Le =
αm

Dm
is the Lewis number

Df =
DTCΔC

αmΔT
is the Dufour parameter

Sr =
DCT ΔT

αmΔC
is the Soret parameter

The pressure perturbations are removed by taking the curl of (20). Taking
only the z component, the resulting equation becomes

∇2w = Ra∇2
1(T + NC) (23)
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where

∇2
1 =

∂2

∂x2
+

∂2

∂y2
.

The boundary conditions become

w = T = C = 0 at z = 0, 1 (24)

3 Linear Stability Analysis

We consider sinusoidal expansions of the form

(W, T, C) = (W̃ , T̃ , C̃)eilx+imy+st (25)

where l and m are dimensionless wave numbers and s is the growth rate.
Substituting (25) into (21 - 23) results in the following equations

(D2 − α2 − s)T̃ + Df (D
2 − α2)C̃ + W̃ = 0, (26)

(D2 − α2)W̃ + α2Ra(T̃ + NC̃) = 0, (27)[
1

Le
(D2 − α2) − φ

σ
s

]
C̃ + Sr(D

2 − α2)T̃ + W̃ = 0 (28)

where

D2 =
d2

dz2
and α2 = l2 + m2.

The boundary conditions are

W̃ = T̃ = C̃ = 0 at z = 0 , 1. (29)

Solutions of the form

(W̃ , T̃ , C̃) = (W̃0, T̃0, C̃0) sin jπz (30)

are possible if

J(J + s)(J + Φs) − LeDfSrJ
3 =

α2Ra(J + Φs − DfLeJ) + Rasα
2(J + s − SrJ)

(31)

where J = j2π2 + α2, Φ = φ
σ
Le, Ras = NLeRa =

gγTKΔC

νDm

is the solutal

Rayleigh number.
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4 Results and Discussion

At marginal stability s = iω where ω is real, and the real and imaginary parts
of equation (31) yields

J2(1 − LeDfSr) − Φω2 = α2[Ra(1 − DfLe) + Ras(1 − Sr)], (32)

ω[J2(1 + Φ) − (ΦRa + Ras)α
2] = 0. (33)

From equation (32) if ω = 0, then

Ra + Ras
(1 − Sr)

1 − DfLe
=

J2(1 − LeDfSr)

α2(1 − DfLe)
(34)

which represents the boundary for monotonic or stationary instability. In
particular, to find the lowest threshold of instability as a function of α we
set ∂Ra

∂α
= 0. This gives αc = π and we conclude that the critical instability

Rayleigh number is

Rac = Ras
Sr − 1

1 − DfLe
+

4π2(1 − LeDfSr)

1 − DfLe
(35)

If Sr = Df = 0 we get
Rac + Ras = 4π2

which is the boundary for stationary instability reported in Nield (1999) for
double-diffusive convection in the absence of Soret and Dufour effects. In the
absence of solute we have Ras = 0 and the critical Rayleigh number in this case
is given by Rac = 4π2 which is the exact result previously reported previously
by Nield (1991).

From the result in equation (35) it can be seen that in the presence of a solute
(i.e when Ras �= 0), if Df = 0 and Sr > 1 the critical Rayleigh number will
increase when the Soret number increases. This means that the Soret effect
serves to delay the onset of convection, i.e is stabilizes the flow. On the other

hand if Sr = 0 and Df >
1

Le
we see from equation (35) that the critical

Rayleigh number will decrease when the Dufour number is increased. Thus
the Dufour effect has a destabilizing effect.

If ω �= 0, we obtain the critical Rayleigh number for the onset of overstability
(oscillatory convection) from equation (30)

ΦRaover + Ras = 4π2(1 + Φ) (36)

which is exactly equal to that of Nield (1999). We note that this result does
not depend on the Soret and Dufour parameters. This means that overstability
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Figure 2: Effect of varying Df on the onset of stability
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Figure 3: Effect of varying Sr on the onset of stability

is not affected by the presence of Soret and Dufour effects in double-diffusive
flow.
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Figure 2 and Figure 3 show the effects of varying the Dufour and Soret pa-
rameters, respectively, on the onset of stationary convection. The diagrams
indicate that the Dufour and Soret effects delay the onset of convection.

5 Conclusion

In this study we used linear stability analysis to investigate cross-diffusion
(Soret and Dufour) effects in double-diffusive (thermal and solutal gradients
imposed) convection in a fluid-saturated porous medium. The aim of this work
was to investigate the Soret and Dufour effects on the onset of convection.
It was found that, in the case of stationary instability, the Soret effect had
a stabilizing effect whereas the Dufour effect was destabilizing. The cross-
diffusion effects were found to have no effect on overstability. In the limiting
case when the Soret and Dufour parameters were set to be equal to zero the
results presented in this study reduced to those reported in previous studies
on related double-diffusive convective flow.
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