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Abstract

In this work we present and investigate the combined singular and impulse
control problem for jump diffusions. Such problems frequently arise in fi-
nance, for instance, when both fixed and proportional transaction costs are
considered. A verification theorem for the generalised combined singular and
impulse control is formulated and proved. The verification theorem provides
sufficient conditions for the existence of both the value function and optimal
combined controls. An example is presented to illustrate the application of
the theory.
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1 Introduction

The problem of portfolio optimization in the presence of transaction costs has
been explored by several researchers before, see, for example, [1], [5] and [6].
The inclusion of both fixed and proportional transaction costs in a portfolio
optimization question gives rise to a problem which exhibits both singular
and impulse control features. To the best of our knowledge the theory of
combined singular and impulse control for diffusion processes was presented
for the first time in [8].

In this paper we extend the theory treated in [8] to the jump diffusion
context and again, as far as we know, this has not been done before. That is
to say, using some of the arguments presented in [8] we develop the theory
of combined singular and impulse control for Lévy processes. An additional
feature which distinguishes this paper from any other previous work is that
it illustrates the application of combined singular impulse control to the
problem of optimal harvesting, with density dependent prices, in a jump
diffusion set up and in the presence of transaction costs.

Our example on optimal harvesting with density dependent prices is mo-
tivated by Example 3.1 in [2]. In [2] the problem of optimal stochastic har-
vesting with density- dependent prices for diffusions is discussed under the
no transaction costs assumption. For an extensive coverage of the theory
and application of singular control and impulse control as separate stochas-
tic control techniques for Lévy processes see, for example, [11] and references
given therein.

The rest of this paper is organised as follows. In Section 2 the general
combined singular and impulse control problem is formulated. In Section
3 the verification theorem and its proof are presented. An example on the
application of the theory of combined singular and impulse control for jump
diffusions is discussed in Section 4. In this example we take both proportional
and transaction costs into account. The paper has some conclusive remarks
that are presented in Section 5.

We now present the formulation of the combined singular and impulse
control problem for Lévy processes.
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2 Problem Formulation.

Let (Ω,F , {Ft}t≥0, P ) be a filtered complete probability space satisfying the
usual conditions.

It is assumed that in the absence of interventions the state, Y (t) ∈ <k,
of a given system evolves according to the following equations

dY (t) = b(Y (t))dt+ σ(Y (t))dB(t) +
∫
<d
γ(Y (t−), z)Ñ(dt, dz); (1)

Y (0−) = y ∈ <k, (2)

where b : <k → <k, σ : <k → <k×m and γ : <k ×<d → <k×d are given func-
tions satisfying the conditions for the existence and uniqueness of a strong
solution, Y (t). For details concerning such conditions see, for example, Theo-
rem 1.19 in [11]. Here, B(t) is m- dimensional Brownian motion with respect
to {Ft} and Ñr(., .) is a compensated Poisson random measure given by

Ñr(dt, dz) = Nr(dt, dz)− dtνr(dz); r = 1, 2, . . ., d

where νr(.) is a Levy measure associated with the Poisson random measure
Nr(., .). For a more extensive treatment of random measures and stochastic
differential equations with a jump component see, for example [4], [7], [9], [11]
and [12].

The generator of Y (t) coincides with the second order integro-differential
operator L, given by

Lφ(y) =
k∑
i=1

bi
(
y, u(y)

) ∂φ
∂yi

+
1

2

k∑
i,s=1

(σσT )is
(
y, u(y)

) ∂2φ

∂yi∂ys

+
∫
<d

d∑
r=1

{
(
φ(y + γ(r)(y, u(y), z)− φ(y)−∇φ(y)Tγ(r)

(
y, u(y), z

)
}νr(dzr).

(3)

Suppose that at any given point τj the decision maker is free to give
the system an impulse, ξj ∈ Z ⊂ <p, where Z is the set of all admissible
impulses. At this juncture it is necessary to define the notion of an impulse
control.

Definition 2.1 (Impulse Control) An impulse control, for the system de-
scribed by (2.1)− (2.2), is a double sequence
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v = (τ1, τ2, . . ., τj. . ., ξ1, ξ2, . . ., ξj, . . .)j≤M M ≤ ∞

where 0 ≤ τ1 ≤ τ2 ≤ . . . is an increasing sequence of Ft-stopping times (in-
tervention times) and ξ1, ξ2, . . . are the corresponding Fτj -adapted impulses
(interventions) at these stopping times.

We now consider that as a result of applying an impulse control
v = (τ1, τ2, . . ., τj . . ., ξ1, ξ2, . . ., ξj . . .), the corresponding controlled state
process, Y (v)(t), evolves according to (2.4)− (2.7) stated below

Y (v)(0−) = y and Y (v)(t) = Y (t); 0 < t < τ1 (4)

Y (v)(τj) = Γ(Y̌ (v)(τ−j ), ξj); j = 1, 2, . . . (5)

dY (v)(t) = b(Y (v)(t))dt+ σ(Y (v)(t))dB(t) +
∫
<d
γ(Y (v)(t−), z)Ñ(dt, dz) (6)

for τj < t < τj+1 (7)

where

Y̌ (v)(τ−j ) = Y (v)(τ−j ) +4NY (τj), (8)

represents the jump in Y (v)(τj) which sterms from N(., .) and

Γ : <k ×Z → <k

is a given function. See for examle [11] for more details on the general
formulation of the impulse control problem.

Let S ⊂ <k be a fixed Borel set in which we seek solutions to the problem
such that S ⊂ S̄0. Here S0 denotes the interior of S and S̄0 is the closure of
S0.

Suppose we are given continuous functions f : S → <, g : <k → <,
κ = [κie] ∈ <k×p and θ = [θi]. Additionally, let the profit of making an
intervention with impulse ξ ∈ Z when the state is y be K(y, ξ), where
K : S ×Z → <. Let V be the set of admissible impulse controls, v, and also
assume that

Ey
[∫ τS

0
f−(Y (v)(t)dt

]
<∞ for all y ∈ <k, v ∈ V , (9)

E
[
g−(Y (v)(τS))χ{τS<∞}

]
<∞ for all y ∈ <k, v ∈ V , (10)

E
[ ∑
τj≤τS

K(Y (v)(τ−j ), ξj)
]
<∞ for all y ∈ <k, v ∈ V . (11)
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where

τS = inf{t ≥ 0, ;Y (v)(t) 6∈ S}.

The notion of intervention operator plays a crucial role in the rest of this
work, so we define it below.

Definition 2.2 Let H be the space of all measurable functions h : S → <.
The intervention operator M : H → H is defined by

Mh(y) = sup{h(Γ(y, ξ)) +K(y, ξ); ξ ∈ Z}. (12)

We let

T = {τ ; τ stopping times, 0 ≤ τ ≤ τS}.

Suppose that at times tn ∈ [τj; τj+1] one is allowed to intervene and
apply, whenever it is profitable to do so, the singular control ψ for n =
1, 2, . . ., q. For a more elaborate treatment of the singular control theory
and its applications see [10] and [8].

We note that ψ ∈ <p is an adapted cadlag process with non-negative,
increasing components such that ψ(0−) = 0. We also consider u(t) to be an
adapted cadlag process (our absolutely continuous control) with values in a
given open, connected set U ⊂ <k . Adopting the notation in [11] we let the
jumps caused by the singular control ψ be denoted by

4ψY (t) = κ(Y (t−))4ψ.

and interpret
4ψφ(Y (tn)) = φ(Y (tn))− φ(Y (t−n )) (13)

as the increase in φ due to the jump 4ψ(t) = ψ(t)− ψ(t−) at
t = tn. Denote by W the set of all admissible combined controls
w = (v, u, ψ). Suppose that as a consequence of applying the combined
singular and impulse control, w = (v, u, ψ), the state process Y (w) satifies
(2.14)− (2.17) given as follows

Y (v)(0−) = y and Y (v)(t) = Y (t); 0 < t < τ1 (14)

Y (v)(τj) = Γ(Y̌ (v)(τ−j ), ξj); j = 1, 2, . . (15)

dY (v)(t) = b(Y (v)(t), u(t))dt+ σ(Y (v)(t), u(t))dB(t) +

+
∫
<l
γ(Y (v)(t−), u(t), z)Ñ(dt, dz) + κ(Y v(t), u(t))dψ (16)

for τj < t < τj+1 < τ ∗ (17)

5

SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 32



where
τ ∗ = τ ∗(ω) = lim

R→∞
(inf{t > 0; | Y (v)(t) |≥ R}) ≤ ∞. (18)

Define a performance functional, J (w), for the controlled process Y (w), by

J (w)(y) = Ey
[∫ τS

0
f(Y (w)(t), u(t))dt+ g(Y (w)(τS))χ{τS<∞} +

+
∫ τS

0
θT (Y (t))dψ(t) +

∑
τj≤τS

K(Y (w)(τ−j ), ξj)
]
.

The combined singular and impulse control problem for jump diffusions is to
find Φ(y) and w∗ ∈ W such that

Φ(y) = sup{J (w)(y);w ∈ W} = J (w∗)(y). (19)

In the next section we state and prove a verification theorem for the
combined singular and impulse control problem of jump diffusions. The
theorem that we present below constitutes the main result of this work.

3 Main Result

Theorem 3.1 (Hamilton-Jacobi-Bellman Quasi-Variational Inequalities for
combined singular and impulse control)

1. Suppose that we can find φ : S̄ → < such that

(i) φ ∈ C2(So) ∩ C(S̄),

(ii) φ ≥Mφ on S0,

(iii)
∑k
i=1κie(y)

∂φ
∂yi

(y) + θe(y) ≤ 0 for all y ∈ S,
Define

D = {y ∈ S; max
e
{Mφ(y)− φ(y),

k∑
i=1

κie(y)
∂φ

∂yi
(y) + θe(y)} ≤ 0}

(20)

Assume that Y (w)(t) spends 0 time on ∂D a.s., that is,
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(iv) Ey
[∫ τS

0 χ∂D(Y (w)(t))dt
]

= 0 for all y ∈ S, w ∈ W ,

and suppose that

(v) ∂D is a Lipschitz surface,

(vi) φ ∈ C2(S \ ∂D) with locally bounded derivatives near ∂D,

(vii) Lwφ+ f(y, w) ≤ 0 for all w ∈ W, y ∈ S0 \ ∂D,
(viii) Y (w)(τS) ∈ ∂S a.s. on {τS <∞} and

φ(Y (w)(t)) → g(Y (w)(τS)).χ{τS<∞} as t→ τ−S a.s., for all
y ∈ S, w ∈ W ,

(ix) {φ−(Y (w)(τ)); τ ∈ T } is uniformly integrable, for all y ∈ S,
w ∈ W ,

(x) Ey
[∫ τS

0 {| σT (Y (t), u(t))5φ(Y (t)) |2 +
∑d
m=1

∫
<k | φ(Y (t) + γ(m))−

φ(Y (t)) |2 νm(dz)}dt
]
<∞

for all y ∈ S, w ∈ W .
Then

φ(y) ≥ Φ(y) y ∈ S.

2. Suppose that, in addition to conditions 1(i)− 1(x),

(i) there exists a function ŵ = (v̂, û, ψ̂) ∈ W such that

Lŵφ(y) + f(y, ŵ(y)) = 0 for all y ∈ D

(ii) Y û,ψ̂(t) ∈ D̄
(iii) dψ̂(t) = 0

(iv)
∑p
e=1

{∑k
i=1κie(y)

∂φ
∂yi

(Y (t−)) + θe
}
dψ̂(c)

e = 0 for all 1 ≤ p

where ψ(c)
e (t) is the continuous part of ψ(c)

e .

(v) 4ψ̌φ(Y (tn)) +
∑p
e=1θe(Y (t−n ))4ψ̌e(tn) = 0 for all jumping times

tn of ψ̌
and

limR→∞Ey
[
φ(Y û,ψ̂(TR))

]
= Ey

[
g(Y û,ψ̂(T )).χ{T<∞}

]
where

TR = min(τS , R) for R <∞.

and

7

SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 34



(vi) ξ̂(y) ∈ Argmax{φ(Γ(y, .)) +K(y, .)} ∈ Z exists for all y ∈ S and
ξ̂(.) is a Borel measurable selection.

Put τ̂0 = 0 and define an impulse control
v̂ = (τ̂1, τ̂2, . . ., τ̂j, . . .; ξ̂1, ξ̂2, . . ., ξ̂j, . . .)
inductively by τ̂j+1 = inf{t > τ̂j; Y

(ŵj)(t) 6∈ D} ∧ τS and

ξ̂j+1 = ξ̂(Y (ŵj)(τ̂−j+1)) if τ̂j+1 < τS where Y (ŵj) is the result of

applying the combined control ŵj := (v̂, û, ψ̂) to Y .

(vii) Let ŵ := (v̂, û, ψ̂) ∈ W and also suppose that
{φ−(Y (ŵ)(τ)); τ ∈ T } is Qy-uniformly integrable for all y ∈ S.

Then

φ(y) = Φ(y) for all y ∈ S

and

ŵ ∈ W is an optimal combined singular impulse control.

In the proof of this verification theorem we apply arguments used to prove
Theorem 2.1 in [2], Theorem 2.1 in [3] and Theorem 4.1 in [8].

Proof 3.1 On the basis of an approximation argument (see for example The-
orem 2.11 in [8], Theorem 10.4.1 in [10] ) and by also using 1(iv)−1(vi) of the
above stated theorem we can assume that φ ∈ C2(S)∩C(S̄). Consider an arbi-
trarily chosen impulse control v = (τ1, τ2, . . ., τj, . . .; ξ1, ξ2, . . ., ξj, . . .) ∈ V
and let τ0 = 0. Applying Itô’s generalized formula for semimartingales, see
for example [5] and [6] ( page 74 Theorem 33), between the stopping times τj
and τj+1 with y ∈ S, we obtain

φ(Y̌ (τ−j+1))− φ(Y (τj)) =
∫ τj+1

τj
Lφ(Y (t)))dt+

+
∫ τj+1

τj

k∑
i=1

∂φ

∂yi
(Y (t−))

p∑
e=1

κie(Y (t−))dψce(t) +
∑

τj<tn<τj+1

4ψφ(Y (tn)) (21)

where ψce(t) denotes the continuous part of ψe(t) and Y̌ (τ−j+1) is defined
as in (8).
Taking expectations we get

Ey
[
φ(Y̌ (τ−j+1))

]
− Ey

[
φ(Y (τj))

]
= Ey

[∫ τj+1

τj
Lφ(Y (t)))dt+

+
∫ τj+1

τj

k∑
i=1

∂φ

∂yi
(Y (t−))

p∑
e=1

κie(Y (t−))dψce(t) +
∑

τj<tn<τj+1

4ψφ(Y (tn))
]
. (22)
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This last equation is equivalent to

Ey
[
φ(Y (τj))

]
− Ey

[
φ(Y̌ (τ−j+1))

]
= −Ey

[∫ τj+1

τj
Lφ(Y (t)))dt+

+
∫ τj+1

τj

k∑
i=1

∂φ

∂yi
(Y (t−))

p∑
e=1

κie(Y (t−))dψce(t) +
∑

τj<tn<τj+1

4ψφ(Y (tn))
]
. (23)

Summing up from j = 0 to j = m yields

φ(y) +
m∑
j=1

Ey
[
φ(Y (τj))− φ(Y̌ (τ−j ))

]
− Ey

[
φ(Y (τ−m+1))

]
= −Ey

[∫ τm+1

0
Lφ(Y (t)))dt (24)

+
∫ τm+1

0

k∑
i=1

∂φ

∂yi
(Y (t−))

p∑
e=1

κie(Y (t−))dψce(t) +
∑

0<tn<τj+1

4ψφ(Y (tn))
]
. (25)

It is easy to note that

φ(Y (τj)) ≤ φ(Γ(Y (τ−j ), ξj)) +K(Y (τ−j ), ξj). (26)

Applying the definition of the intervention operator, M, we obtain

φ(Y (τj)) = φ(Γ(Y (τ−j ), ξj)) +K(Y (τ−j ), ξj) ≤Mφ(Y (τ−j )) if τj < τS
(27)

and
φ(Y (τj)) = φ(Y (τS) if τj = τS . (28)

Thus,

φ(Y (τj)) ≤ φ(Γ(Y (τ−j ), ξj)) ≤Mφ(Y (τ−j ))−K(Y (τ−j ), ξj) if τj < τS
(29)

and
φ(Y (τj)) = φ(Y (τS) if τj = τS . (30)

From (27) we get

Mφ(Y (τ−j ))− φ(Y (τ−j )) ≥ φ(Y (τj))− φ(Y (τ−j )) +K(Y (τ−j ), ξj). (31)

Applying the mean value theorem we obtain

4ψφ(Y (tn)) = ∇φ(Y (tn))
T4ψ(Y (tn))

=
k∑
i=1

p∑
l=1

∂φ

∂yi
Y (t−n )κil(Y (t−n ))(4ξltn) (32)
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Now, combining (31) and (32) results in

φ(y) +
m∑
j=1

Ey
[
{Mφ(Y (τ−j ))− φ(Y (τ−j ))}χ{τj<τS}

]
≥ Ey

[
φ(Y (τ−m+1))−

∫ τm+1

0
Lφ(Y (t)))dt

−
∫ τm+1

0

k∑
i=1

∂φ

∂yi
(Y (t−)

p∑
e=1

κie(Y (t−))dψ(c)
e (t)−

∑
0<tn<τj+1

4ψφ(Y (tn)) +

+
k∑
i=1

K(Y (τ−j ), ξj)
]
≥ Ey

[∫ τm+1

0
f(Y (t), u(t)))dt+ φ(Y (τ−m+1)) +

+
p∑
e=1

∫ τm+1

0
θe(Y (t))dψe(t) +

k∑
i=1

K(Y (τ−j ), ξj)
]

(33)

Letting m→M we have

φ(y) ≥ Ey
[∫ τS

0
f(Y w(t), u(t)))dt+ g(Y w(τS))χ{τS<∞} +

+
∫ τS

0
θ(Y w(t))dψl(t) +

k∑
i=1

K(Y (τ−j ), ξj)
]

= Jw(y) for all y ∈ S (34)

If we assume that conditions 2(i)− (vi) hold, and apply the above reasoning
to
ŵ = (v̂, ξ̂, û), then we get the following equalities, from (33) and (34), respec-
tively,

φ(y) +
m∑
j=1

Ey
[
{Mφ(Y (τ−j ))− φ(Y (τ−j ))}χ{τj<τS}

]
= Ey

[
φ(Y (τ−m+1))

−
∫ τm+1

0
Lφ(Y (t)))dt−

∫ τm+1

0

k∑
i=1

∂φ

∂yi
(Y (t−)

p∑
l=1

κie(Y (t−))dψ̂(c)
e (t)

−
∑

0<tn<τj+1

4ψφ(Y (tn) +
k∑
i=1

K(Y (τ−j ), ξj)
]

= Ey
[∫ τm+1

0
f(Y (t), û(t)))dt+ φ(Y (τ−m+1)) +

+
p∑
e=1

∫ τm+1

0
θe(Y (t))dψe(t) +

k∑
i=1

K(Y (τ−j ), ξj)
]

(35)
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φ(y) = Ey
[∫ τS

0
f(Y ŵ(t), û(t)))dt+ g(Y ŵ(τS))χ{τS<∞} +

+
∫ τS

0
θ(Y ŵ(t))dψ̂e(t) +

k∑
i=1

K(Y ŵ(τ−j ), ξ̂j)
]

= J ŵ(y) for all y ∈ S. (36)

Consequently, we obtain

φ(y) = Φ(y) = sup{J (w)(y);w ∈ W} = J ŵ(y). (37)

This completes the proof of the theorem.

4 Application

We now illustrate the application of the verification theorem for the general
combined singular and impulse control theory.

Example 4.1 { Optimal harvesting policy under trans-
action costs}
Suppose that if there are no interventions the stochastic process X(t) , which
might represent the remaining resources, for example some mineral resource
or wildlife population at time t (with µ, σ, β > 0 constants), evolves according
to

dX(t) = µdt+ σdB(t) + β
∫
<
zÑ(dt, dz); X(0) = x > 0 (38)

where B(t) is 1-dimensional standard Brownian motion, Ñ(., .) is a compen-
sated Poisson random measure and βz ≤ 0 for a.a z(ν).

Now, assume that at any time τj, the investor is free to take out an
amount, ξj, from X(t) and such a transaction incurs a cost, denoted by
m(ξj), and given by

m(ξj) = δξj + c

where c ≥ 0 and δ ∈ (0, 1) are constants.
We suppose that the decision maker applies a combined control w =

(v, u, ψ) where
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SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 38



v := (τ1, τ2, ..., τj..., ξ1, ξ2, ..., ξj...)

is an impulse control, u(t) is the absolutely contiuous control and ψ(t) is an
increasing, adapted cádlág process representing the total amount taken out
from X(t) up to time t. ψ is a singular control.

Let W be the set of all combined singular and impulse controls w =
(v, u, ψ) such that X(w)(t) ≥ 0. We call W the set of admissible combined
singular and impulse controls.

We now assume that as a result of applying the combined singular and
impulse control w the evolution of the controlled process X(t) = X(w)(t) is
described by (39)− (41) given below

X(w)(t) = X(t) if 0 ≤ t < τ1; (39)

dX(w)(t) = µdt+ σdB(t) + β
∫
<
zÑ(dt, dz) − (1 + δ)dψ(t)

if τj ≤ t < τj+1; (40)

X(w)(τj) = X̌(w)(τ−j )− (1 + δ)ξj − c. (41)

Define the performance criterion, J (w)(s, x), by

J (w)(s, x) := Es,x
[∫ τ

0
e−ρ(s+t)Xα(t)dψ(t)

]
(42)

where τ = inf{t : X(t) ≤ 0} (time to exhaustion of resourcs), ρ > 0 is a
discount factor, 0 <| α |≤ 1, E(.) denotes expectation with respect to prob-
ability law P and w = (v, u, ψ) represents an admissible combined singular
and impulse control.

The problem is to find Φ(s, x) and w∗ = (v∗, u∗, ψ∗) such that

Φ(s, x) = sup
(v,u,ψ)=w∈W

J (w)(s, x) = J (w∗)(s, x) (43)
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Solution

This is an example of a combined singular and impulse control problem in a
jump diffusion market. In this case the singular control is ψ since dψ(t) may
be singular with respect to the Lebesgue measure dt. The impulse control is
v.

We apply Theorem 3.1 to solve the problem. Here we separate cases .

Case 1: 0 < α ≤ 1

This case is a jump diffusion extension of Example 3.2 in Leirvik (2005) and
the analyses, particularly of the singular features of the problem, are similar
in some stages . However, it is worthwhile to note that in Leirvik (2005)
the diffusion version of the problem is formulated and solved using singular
control theory only whereas in in this work we use the more general combined
singular and impulse control for Lévy processes.

It can easily be observed that in light of Theorem 3.1 we have
K = u = g = f = 0, θ = e−ρsxα, κ(s, x) = −(1 + δ),
Γ(s, x, ξ) = x− (1 + δ)ξ − c and S = {(s, x); x > 0}.

If there are no interventions, the generator of the controlled process

Y (t) =

[
s

X(t)

]
; Y (0) = y =

[
0
x

]

coincides with the second order integro-partial differential operator, L,
given by

Lφ(s, x) =
∂φ

∂s
+ µ

∂φ

∂x
+

1

2
σ2∂

2φ

∂x2
+
∫
<
{φ(s, x+ βz)− φ(s, x)− βz

∂φ

∂x
}ν(dz).

We suggest a solution of the form

φ(s, x) = e−ρsϕ(x).

With this solution candidate we have

Lφ(s, x) = e−ρsL′ϕ(x),

where

L′ϕ(x) = −ρϕ(x) + µϕ′(x) +
1

2
σ2ϕ′′(x) +

∫
<
{ϕ(x+ βz)− ϕ(x)− βzϕ′(x)}ν(dz).
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In this example the intervention operator, M, is given by

Mϕ(x) = sup
ξ

{
ϕ(x− (1 + δ)ξ − c); ξ ∈ Z

}
= sup

ξ

{
ϕ(x− (1 + δ)ξ − c); 0 ≤ ξ ≤ x− c

1 + δ

}

and the continuation region is described as follows

D = {y ∈ S; max{Mφ(y)− φ(y),max
e
{
k∑
i=1

κie(y)
∂φ

∂yi
(y) + θe(y)}} ≤ 0}

=
{
(s, x) ∈ S; sup

ξ

{
ϕ(x− (1 + δ)ξ − c); 0 ≤ ξ ≤ x− c

1 + δ

}
− ϕ(x) ≤ 0

}
∩

∩
{
(s, x) ∈ S; − (1 + δ)ϕ′(x) + xα < 0

}
.

We propose that D be given by

D =
{
(s, x) ∈ S; 0 < x < x∗

}
for some x∗ > 0.

For all x ∈ D, condition 2(i) of Theorem 3.1 yields

−ρϕ(x) + µϕ′(x) +
1

2
σ2ϕ′′(x) +

∫
<
{ϕ(x+ βz)− ϕ(x)− βzϕ′(x)}ν(dz) = 0.

To solve this last equation we try

ϕ(x) = erx for some r ∈ <.

Then r must solve

h(r) := −ρ+ µr +
1

2
σ2r2 +

∫
<
{erβz − 1− rβz}ν(dz) = 0. (44)

Since h(0) = −ρ < 0 and lim|r|→∞ h(r) = ∞ we see that there exist two
solutions r1, r2 of h(r) = 0 such that r2 < 0 < r1. Moreover, since
erβz − 1 − rβz ≥ 0 for all r, z we have | r2 |> r1. With such a choice of r1
and r2 we try

ϕ(x) = A1e
r1x + A2e

r2x where Ai (i = 1, 2) is a constant.
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We recall that φ(s, x) = e−ρsϕ(x) is a value function and as such ϕ(0) = 0.
This yields

A1 = A = −A2 > 0.

Thus

ϕ(x) = A(er1x − er2x); 0 < x < x∗. (45)

Outside D we require that

−(1 + δ)ϕ′(x) + xα = 0.

From this last equation we get

ϕ(x) =
x1+α

(1 + α)(1 + δ)
+ A3, for x ≥ x∗ (46)

where A3 is an arbitrary constant. Combining (45) and (46) we get

ϕ(x) =

{
A(er1x − er2x); 0 < x < x∗

x1+α

(1+α)(1+δ)
+ A3, for x ≥ x∗ .

To determine A, A3 and x∗ we need three equations. Using the fact that
ϕ is continuous at x∗ we obtain

A(er1x
∗ − er2x

∗
) =

(x∗)1+α

(1 + α)(1 + δ)
+ A3. (47)

Also, since ϕ ∈ C1 at x = x∗ then

A(r1e
r1x∗ − r2e

r2x∗) =
(x∗)α

1 + δ
. (48)

From ϕ ∈ C2 at x = x∗ we infer that

A(r2
1e
r1x∗ − r2

2e
r2x∗) =

α(x∗)α−1

1 + δ
. (49)

Using (48) and (49) we get

e(r1−r2)x∗ =
r2(r2x

∗ − α)

r1(r1x∗ − α)
. (50)
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Now, x∗ is determined by solving the equation

x∗ =
αr1 − αr2e

(r2−r1)x∗

r2
1 − r2

2e
(r2−r1)x∗

. (51)

The value of x∗ obtained from this last equation is used to find A and A3

from equations (49) and (47) by substitution.
We now examine Mϕ .

Mϕ(x) = sup
ξ

{
ϕ(x− (1 + δ)ξ − c, ); 0 ≤ ξ ≤ x− c

1 + δ

}
= sup

ξ

{
A(er1[x−(1+δ)ξ−c] − er2[x−(1+δ)ξ−c]); 0 ≤ ξ ≤ x− c

1 + δ

}
≤ sup

ξ

{
A(er1x − er2x.e−r2(1+δ)ξ.e−r1c); 0 ≤ ξ ≤ x− c

1 + δ

}
≤ A(er1x − er2x).

= ϕ(x).

This shows that the point of maximum , ξ̂(x), is given by

ξ̂(x) = 0.

The above results are summarised in the following theorem

Theorem 4.1 Let X(t) be given by (39)− (41) and J (w)(s, x) be defined by
(42). Assume that ρ ≥ 0 and 0 < α ≤ 1. Then

Φ(s, x) := sup
w∈W

J (w)(s, x) =

{
Ae−ρs(er1x − er2x); 0 < x < x∗

e−ρs
(

x1+α

(1+α)(1+δ)
+ A3

)
, for x ≥ x∗ .

where x∗ A and A3 are determined by solving equations (51), (49) and (47)
simultaneously. In this case it is optimal not to exercise impulse control. The
corresponding optimal singular control (û, ψ̂) is as follows

• If x ≤ x∗ it is optimal to do nothing.

• If x > x∗ it is optimal to take out an amount ξ = x− x∗

Proof 4.1 In this proof we verify that the function φ(s, x) given by

φ(s, x) := sup
w∈W

J (w)(s, x) =

{
Ae−ρs(er1x − er2x); if 0 < x < x∗

e−ρs
(

x1+α

(1+α)(1+δ)
+ A3

)
, if x ≥ x∗.

16

SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 43



where x∗, A and A3 are determined by (51), (49) and (47) , satisfies all the
requirements of Theorem 3.1.

It is not difficult to observe that φ(s, x) is continuous on S̄ and also
differentiable on S. Thus, condition 1(i) is satisfied.

We now show that φ ≥Mφ on S. But for x ≤ x∗ we have

Mϕ(x) = sup
ξ

{
ϕ(x− (1 + δ)ξ − c, ); 0 ≤ ξ ≤ x− c

1 + δ

}
= sup

ξ

{
A(er1[x−(1+δ)ξ−c] − er2[x−(1+δ)ξ−c]); 0 ≤ ξ ≤ x− c

1 + δ

}
≤ sup

ξ

{
A(er1x − er2x.e−r2(1+δ)ξ.e−r2c); 0 ≤ ξ ≤ x− c

1 + δ

}
≤ A(er1x − er2x).

= ϕ(x).

For x ≥ x∗ we note that

Mϕ(x) = sup
ξ

{
ϕ(x− (1 + δ)ξ − c, ); 0 ≤ ξ ≤ x− c

1 + δ

}
= sup

ξ

{ [x− (1 + δ)ξ − c]1+α

(1 + α)(1 + δ)
+ A3 0 ≤ ξ ≤ x− c

1 + δ

}
≤ x1+α

(1 + α)(1 + δ)
+ A3

= ϕ(x).

Hence, φ ≥ Mφ. Thus, condition 1(ii) is satisfied. To verify 1(iii) we just
have to show that −(1 + δ)ϕ′(x) + xα ≤ 0 since e−ρs > 0 for all s ≥ 0. For
x ≥ x∗ this condition holds by construction of ϕ.

Now, for x ∈ D we refer to Example 3.2 in [8].
This proves that condition 1(iii) is satisfied.
The process Y w(t) spends no time on the boundary of D, that is to say

χ∂D(Y (w)(t)) = 0 a.e. Consequently,

Ey
[∫ τS

0
χ∂D(Y (w)(t))dt

]
= 0 for all y ∈ S, w ∈ W

Thus, 1(iv) is satisfied.

17

SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 44



We note that ∂D = x∗. So ∂D = x∗ is a Lipstchitz surface since it is a
constant and this verifies condition 1(v).

To prove condition 1(vi), let us consider the intervals

I1 := (0, δ), I2 := (x∗ − δ, x∗) and I3 := (x∗, x∗ + δ)

where δ is an arbitrarily small positive number.
For x ∈ I1 we have

0 ≤ ϕ′(x) = A(r1e
r1x − r2e

r2x) < (r1e
δr1 − r2),

and

−A(r2
2e
δr1 + r2

2) ≤ ϕ′′(x) = A(r2
1e
r1x − r2

2e
r2x) < Ar2

1e
δr1 .

If x ∈ I2 we have

0 ≤ ϕ′(x) = A(r1e
r1x − r2e

r2x) < A(r1e
r1x∗ − r2),

whereas

−A(r2
2e
r2x∗ + r2

2) ≤ ϕ′′(x) = A((r2
1e
r1x − r2

2e
r2x) < Ar2

1e
r1x∗ .

Finally, taking x ∈ I3 then

0 ≤ ϕ′(x) = A(r1e
r1x − r2e

r2x) < (r1e
r1(x∗+δ) − r2),

and

−A(r2
2e
r2(x∗+δ) + r2

2) ≤ ϕ′′(x) = (r2
1e
r1x − r2

2e
r2x) < Ar2

1e
r1(x∗+δ).

Using these results we can conclude that ϕ has locally bounded first and second
order derivatives near ∂D, and so condition 1(vi) is verified. The rest of the
conditions of Theorem 3.1 hold by construction of ϕ.

Conclusion

Since φ(s, x) = e−ρsϕ(x) satisfies all the conditions of Theorem 3.1 we con-
clude that

φ(s, x) = Φ(s, x) = Jw
∗
(s, x)

and the optimal strategy is to wait until the time, τj, that the resouces reach
or exceed x∗ and then take out an amount ξτj given by

ξτj = max{x(τj)− x∗, 0}
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Case 2: −1 ≤ α < 0

Without loss of generality we consider α = −1
2
. In this case the performance

functional, Jw(s, x), is given by

J (w)(s, x) := E
[∫ τ

s
e−ρ(s+t)(X(t))−

1
2dψ(t)

]
.

Just like in the previous case we observe that K = u = g = f = 0,
θ = e−ρsx−

1
2 , κ(s, x) = −(1 + δ), Γ(s, x, ξj) = x− (1 + δ)ξj − c and

S = {(s, x); x > 0}. It is worthwhile to note that θ : < → < is a non-
increasing function (density dependent prices) and for that reason our anal-
ysis follows closely arguments presented in [2], with the necessary extensions
to the jump diffusion case, and also, in our case the discussion takes trans-
action costs into account. Additionally, here we examine the problem as a
combined singular and impulse control whereas in [2] it is handled from the
singular control angle only.

If we apply the ”take the money and run ”-strategy, ẇ, then all the
resources are taken out immediately. Such a strategy is described by

ẇ(s) = ψ̇(s) = (1− δ)x− c. (52)

The value function obtained from this strategy is

Φ(s, x) = e−ρsx−
1
2 [(1− δ)x− c] = e−ρs[(1− δ)

√
x− cx−

1
2 ]; x > 0. (53)

Apparently, this strategy is not optimal simply because it does not take into
account the impact of transaction costs on total discounted gains, neither
does it cater for the price increases as the resources diminish. Consequently,
we seek a kind of ”chattering strategy”, denoted by w̃(m,η) = ψ̃(m,η) where m
is a fixed positive integer and η > 0.

At times τj given by

τj =
(
s+

j

m
η
)
∧ τ : j = 1, 2, ....,m (54)

an amount of resources 4ψ̃(τj) given by

4ψ̃(τj) := ξ̃j =
1

m
x
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is taken out. This gives the expected total value of harvested resources

J (w̃)(s, x) = Es,x

[
m∑
j=1

e−ρτj [(X(w̃)(τ−j ))+]−
1
2

]
ξ̃j (55)

where

x+ = max{x, 0}; x ∈ <. (56)

We may present this as

J (w̃)(s, x) = Es,x

[
m∑
j=1

e−ρτj [(x− (1 + δ)ξj − c)+]−
1
2

]
ξ̃j (57)

Letting η → 0 we realise that τj → s for j = 1, 2, ...,m and we get

J (w̃(m,0))(s, x) : = lim
η→0

J (w̃(m,η))(s, x)

= lim
η→0

E(s,x)

[
m∑
j=1

e−ρτj [(x− j

m
(1 + δ)x− c)+]−

1
2

]
x

m

= e−ρs
m∑
j=1

h(xj)4xj.

where h(y) = [(x− (1 + δ)y − c)+]−
1
2 , xj = jx

m
and 4xj = xj+1 − xj = x

m
.

Given ε > 0 there exists a positive integer m such that

e−ρs |
∫ x

0
[(x− (1 + δ)y − c)+]−

1
2dy −

m∑
j=1

h(xj)4xj |< ε. (58)

By making an appropriate choice of m and η we obtain the following

| J (w̃(m,η))(s, x)− e−ρs
∫ x

0
[(x− (1 + δ)y − c)+]−

1
2dy |< ε. (59)

We conclude that

lim
m→∞
η−→0

J w̃(s, x) = e−ρs
∫ x

0
[(x− (1 + δ)y − c)+]−

1
2dy =

2e−ρs

1 + δ

√
x− c. (60)

We call this ”chattering policy” of applying w̃(m,η) in the limit as η → 0 and
m→∞ the policy of immediate chattering down to 0.
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Let us now investigate whether the function

φ(s, x) :=
2e−ρs

1 + δ

√
x− c.

satifies the conditions of Theorem 3.1.
Condition 1(i) holds since the function

φ(s, x) :=
2e−ρs

1 + δ

√
x− c

is differentiable on S and continuous on the closure of S whenever x− c > 0.
To investigate condition 1(ii) we observe that

Mφ = sup
ξ

{
φ(Γ(s, x, ξ)) : 0 ≤ ξ ≤ x− c

1 + δ

}
=

2e−ρs

1 + δ
sup
ξ

{√
x− (1 + δ)ξ − c : 0 ≤ ξ ≤ x− c

1 + δ

}
≤ 2e−ρs

1 + δ

√
x− c

= φ(s, x, ).

Hence, φ(s, x, ) satisfies condition 1(ii).
To find out whether φ(s, x, ) satisfies condition 1(iii) we proceed as follows

k∑
i=1

κie(y)
∂φ

∂yi
(y) + θe(y) = −(1 + δ).

2e−ρs

1 + δ
.
d

dx

[
(x− c)

1
2

]
+ e−ρsx−

1
2

= −e−ρs
[
−(x− c)−

1
2 + x−

1
2

]
≤ e−ρs

[
− 1√

x
+

1√
x

]
= 0.

This proves that φ(s, x, ) satisfies condition 1(iii).
Using the second-order integro-partial-differential operator

Lφ(s, x) =
∂φ

∂s
+ µ

∂φ

∂x
+

1

2
σ2∂

2φ

∂x2

+
∫
<
{φ(s, x+ βz)− φ(s, x)− βz

∂φ

∂x
}ν(dz),
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we obtain

Lφ(s, x) =
e−ρs

1 + δ

[
−2ρ(x− c)

1
2 + µ(x− c)−

1
2 − 1

4
σ2(x− c)−

3
2

+
∫
<
{2
√
x+ βz − c− 2(x− c)

1
2 − βz(x− c)−

1
2}ν(dz)

]
≤ e−ρs

1 + δ

[
−2ρ(x− c)

1
2 + µ(x− c)−

1
2 − 1

4
σ2(x− c)−

3
2

+
∫
<
{2
√

(x− c)− 2(x− c)
1
2 − βz(x− c)−

1
2}ν(dz)

]
=

e−ρs

1 + δ

[
−2ρ(x− c)

1
2 + µ(x− c)−

1
2 − 1

4
σ2(x− c)−

3
2

−
∫
<
βz(x− c)−

1
2ν(dz)

]
.

We have applied the fact that βz ≤ 0. Thus

Lφ(s, x) ≤ −2ρe−ρs

1 + δ
(x− c)−

3
2 [(x− c)2 − µ

2ρ
(x− c) +

σ2

8ρ
+ (x− c)

∫
<
βzν(dz)]

=
−2ρe−ρs

1 + δ
(x− c)−

3
2

[
(x− c)2 +

(∫
<
βzν(dz)− µ

2ρ

)
(x− c) +

σ2

8ρ

]
.

So, condition 1(vii) holds if x ≥ c and

(∫
<
βzν(dz)− µ

2ρ

)2
≤ σ2

2ρ
.

We now state the following result:

Theorem 4.2 Let X(w)(t) be given by (39)− (41).

1. Assume that x ≥ c and(∫
<
βzν(dz)− µ

2ρ

)2

≤ σ2

2ρ
. (61)

Then

Φ(s, x) :=
2e−ρs

1 + δ

√
x− c. (62)

where σ and ρ are defined as before. This value is achieved in the limit
if we apply the strategy w̃(m,η) described above with η → 0 and m→∞,
that is, by applying the policy of immediate chattering to 0.
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2. If (∫
<
βzν(dz)− µ

2ρ

)2

>
σ2

2ρ
. (63)

then the value function has the form

Φ(s, x) =

{
e−ρsA(er1x − er2x); for 0 ≤ x < x∗

e−ρs( 2
1+δ

√
x− c− 2

1+δ

√
x∗ − c+B) for x∗ ≤ x

(64)

for some constants A > 0, B > 0 and x∗ > 0 where r1 and r2 are the
solutions of the equation

−ρ+ µr +
1

2
σ2r2 +

∫
<
{erβz − 1− rβz}ν(dz) = 0. (65)

with r2 < 0 < r1 and | r2 |> r1.
In both cases 1. and 2. the corresponding optimal policy is the following:

• If x > x∗ it is optimal to apply immediate chattering from x down to
x∗.

• If 0 < x < x∗ it is optimal to apply the harvesting equal to the local
time of the downward reflected process X̄(t) at x∗.

Proof 4.2 We need to show that the proposed value function satisfies all the
conditions of Theorem 3.1. Let us first examine the case(∫

<
βzν(dz)− µ

2ρ

)2

≤ σ2

2ρ
.

In this case we have

φ(s, x) :=
2e−ρs

1 + δ

√
x− c.

From the construction of φ(s, x) we can state that conditions 1(i)− (iii) and
1(vii) are satisfied.
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Since X(t) spends no time on ∂D, then χ∂DX(t) = 0 a.e and this leads
to

Ey
[∫ τ

0
χ∂D(Y (v)(t))dt

]
= 0 for all y ∈ S, v ∈ V .

So, condition 1(iv) is satisfied.
In this example the boundary, ∂D, of the non-intervention region, D, is

given by

∂D = ∂D1 ∪ ∂D2

where ∂D1 = {0} and ∂D2 = {x∗}. But ∂D1 and ∂D2 are both Lipschitz
surfaces since each of them is a singleton which consists of a constant. Hence,
∂D is also a Lipschitz surface. T hus φ(s, x) satisfies condition 1(v) .

For x > c it can easily be verified that the function

φ(s, x) :=
2e−ρs

1 + δ

√
x− c.

is twice continuously differentiable on S \ ∂D and non of its derivatives
explodes near ∂D. This establishes the requirements of 1(vi).

Recalling that g
(
Y w(τ)

)
= 0 we note that

lim
t→τ

φ(t, x) = lim
t→τ

2e−ρt

1 + δ

√
x− c = 0 = g

(
Y w(τ)

)
as τ →∞.

This proves that 1(vii) is satisfied.
The remaining conditions in part 1. of Theorem 3.1 can also be verified

without much difficulty.
Up to this point we have proved that

φ(s, x) ≥ Φ(s, x).

Now, by construction of φ(s, x) we observe that

Lψ̂(y)φ+ f(y, ψ̂(y)) = 0 for all y ∈ D.

That is to say, 2(i) is satisfied.
Conditions 2(ii)− 2(vii) can be verified using similar arguments as in

Example 2.14 of [7].
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So, in this case

φ(s, x) :=
2e−ρs

1 + δ

√
x− c.

satisfies all the requirements of Theorem 3.1. Hence it is a value function for
the given problem.

We now treat the case(∫
<
βzν(dz)− µ

2ρ

)2

>
σ2

2ρ
.

For this case we need to show that the function φ(s, x) given by

φ(s, x) =

{
e−ρsA(er1x − er2x); for 0 ≤ x < x∗

e−ρs
(

2
1+δ

√
x− c− 2

1+δ

√
x∗ − c+B

)
for x∗ ≤ x

(66)

also satisfies conditions of Theorem 3.1 where A, B, x∗, r1, r2 are as
specified in Theorem 4.2

Here we follow closely arguments used to prove part (b) of Theorem 3.2 in
[2], where we effect the necessary extension arguments to cater for the jump
component as well as transaction costs. First, we observe that if we apply
the policy of immediate chattering from x to x∗ where 0 < x∗ < x, then the
value of the dividends paid out is given by

e−ρs
∫ x−x∗

0
[(x− (1 + δ)y − c)+]−

1
2dy =

2e−ρs

1 + δ

[√
x− c−

√
((1 + δ)x∗ − δx− c)+

]
.

This follows by the argument (53) − (58) presented above. To verify the
conclusions of part 2 of Theorem 4.2 we observe that r1 and r2 are the roots
of the equation

−ρ+ µr +
1

2
σ2r2 +

∫
<
{erβz − 1− rβz}ν(dz) = 0.

Hence, by defining φ(s, x) as in (66) it is relatively easy to show that for
x < x∗

Lφ(s, x) = 0 (67)

25

SJPAM, Vol 3, pp 29 - 57E. Chikodza SJPAM, Vol 3, pp 29 - 57 52



and

φ(s, 0) = 0. (68)

Combining the smooth contact principle and the requirement that φ(s, x) be
C2 at x = x∗, we obtain the following three equations

A(er1x
∗ − er2x

∗
) = B (69)

A(r1e
r1x∗ − r2e

r2x∗) = (x∗)−
1
2 (70)

A(r2
1e
r1x∗ − r2

2e
r2x∗) = −1

2
(x∗)−

3
2 (71)

Dividing (69) by (70) we obtain the equation

r1e
r1x∗ − r2e

r2x∗

r2
1e
r1x∗ − r2

2e
r2x∗

= −2x∗ (72)

Now, observing that

lim
x∗→0

r1e
r1x∗ − r2e

r2x∗

r2
1e
r1x∗ − r2

2e
r2x∗

=
1

r1 + r2
< 0 (73)

and

lim
x∗→∞

r1e
r1x∗ − r2e

r2x∗

r2
1e
r1x∗ − r2

2e
r2x∗

=
1

r1
> 0 (74)

the intermediate value theorem guarantees the existence of x∗ satisfying equa-
tion (72) With this value of x∗ we define A by (70) and B by (69). We
have proved the existence of a solution of the system (69) − (71) where
A > 0, B > 0, x∗ > 0. With this choice of A > 0, B > 0, x∗ > 0
the function φ(s, x) becomes a C2 and we can easily verify that φ satisfies
conditions 1(i)− (x) of Theorem 3.1. Hence,

φ(s, x) ≥ Φ(s, x) for all s, x. (75)

Moreover, the non-intervention region D given by (3.1) is identified to be

D = {(s, x) : 0 < x < x∗}. (76)

Consequently, by (66) we know that condition 2(i) of Theorem 3.1 holds.
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Additionally, it is an established fact that the local time ψ̂ of the downward
reflected process X̄(t) at x∗ satisfies conditions 2(ii)−2(vii) (see, for example
[2] and [9] and references therein).

By Theorem 3.1 we conclude that if x ≤ x∗ then

ψ∗ := ψ̂

is optimal and
φ(s, x) = Φ(s, x).

Finally, if x > x∗ then it follows by (4.28) that immediate chattering from x
to x∗ gives the value

Φ(s, x) ≥ e−ρs[
√
x(1− δ)− cx−

1
2 ] + Φ(s, x∗) for all x > x∗ (77)

Combining this with (74) this proves that

φ(s, x) = Φ(s, x) for all s, x (78)

and the proof of part 2 of Theorem 4.2 is complete.

5 Conclusion

In this paper we have presented the combined singular and impulse control
problem for jump diffusion processes. A verification theorem was formu-
lated and proved for jump diffusions. An example on optimal dividend pay-
out/optimal harvesting was analysed and explicit solutions were derived. In
the example both proportional and fixed transaction costs were considered.
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